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Abstract

Intuitively, a set of sites on a surface is in Euclidean position, if points are so close each other
that planar algorithms can be easily adapted in order to solve classical problems of Computational
Geometry. In this work we focus in a very relevant class of metric surfaces, the Euclidean 2-
orbifolds in addition to the sphere. To seek for maximum sets (in terms of cardinal) in Euclidean
position of a given set of sites is, in most of these surfaces, equivalent to compute the maximum
depth of an arrangement of convex sets determined by the geometry of the surface. We present
algorithms for finding either one or all the maximum subsets as well as the number of such subsets
and their minimum cardinal and show that this problem is equivalent to the search of the maximum
clique for a natural class of geometric graphs generated from these surfaces.

1 Introduction. Euclidean position

Most people along the human history have believed in a flat earth. Even nowadays there exit
persons that still hold the flatness of the world. This is because most of our daily experience
takes place in a restricted region of a sphere-like surface, so that there are no significant errors
if it is considered as a plane. This idea can be easily extended to the Computational Geometry
context, where in multiple applications it is assumed that if a given data set is constrained to a
small portion of a surface it presents a planar behavior.

The notion of Euclidean position was introduced in [7] for the sphere, the cylinder, the cone,
and the torus, and it was extended in [4] to a wider class of surfaces, the Euclidean 2-orbifods,
where methods for determining whether or not a point set is in Euclidean position are developed
(see first column in Table 1). In this paper we extend those previous works and focus on finding
the subsets with highest cardinal in Euclidean position either on an Euclidean 2-orbifold or on the
sphere.

As it is known, any Euclidean 2-orbifolds is obtained as a quotient space ¢ : R* — IR? /T ~85,
being ¢ the quotient map and I' a discrete group of planar motions, and where an equivalent class
(the orbit) of a point of IR? is given by all its images by elements of I'. The four locally Euclidean
surfaces (the cylinder, the twisted cylinder, the torus and the Klein bottle) and others well-known
surfaces as the Moebius strip or the projective plane are 2-orbifolds. A more complete study of
them can be found in [8].

Given two points, X and Y, the geodesics joining them in the quotient metric correspond to
straight-line segments matching one point of the orbit of X with all the ones of the orbit of Y.
The shortest of these line segments will be called the segment between X and Y. On the sphere,
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the segment corresponds to the shortest geodesic joining the points. The distance between X and
Y is the length of the segment joining them.

To get a simple representation of an Euclidean 2-orbifold, a very useful tool is the fundamental
domain: a closed region in the plane containing one element of each orbit, that is unique except
for the points of the boundary (double points). If we delete all double points of a fundamental
domain and consider its image by ¢, we obtain what we call a fundamental region.

A set of sites P either on a 2-orbifold or the sphere is said to be in Fuclidean position if there
exists a fundamental region so that all segments joining points of P (the clique generated by P)
are contained inside it (a hemisphere in the case of the sphere).

A subset @ of P is a maximum subset of P for the Euclidean position (MSEP for short) if it
is in Euclidean position and there is no other higher cardinal subset having that property. In this
work we develop several methods to find either one or all the MSEPs of a given set of sites both
on the Euclidean 2-orbifolds and the sphere and determine how large all means. Complexities of
these procedures are summarized in Table 1 together with the minimum number of points of P
that can be assured to be in Euclidean position on each surface.

Given a set P on an Euclidean 2-orbifold or the sphere, the segment graph of P is the geometric
graph having the points of its orbit as vertices, and as edges all the possible segments, that coincides
with the image by ¢! of the complete graph with nodes in P. It is easy to realize the following
result:

Lemma 1 Q C P is in Fuclidean position if and only if the connected components of the segment
graph of Q) are cliques.

This turns our problem to the searching of cliques in segment graphs, a problem that is known
to be NP-hard for general graphs [3, 6]. However, for segment graphs on the sphere and most of
2-orbifolds (the ones without glide reflections) we prove that this can be solved in polynomial time.
This is due to the geometric properties of these surfaces which allow to transform this problem
to the one of computing the region of maximum depth in an arrangement of convex polygons (or
maximum circles in the sphere).

We will make use of known algorithms for computing the maximum depth of an arrangement
of convex polygons [5, 2] as well as the ones for determining the halfspace depth of a point in
both the plane [1] and the space [9]. This reasoning does not work properly in surfaces with glide
reflections, where no polynomial time algorithms have been found at once. In fact, sets with O(2")
MSEPs can be constructed in these surfaces.

2 Surfaces without glide reflections

It is known a set of sites P on the cone, the cylinder, the torus, or the sphere is in Euclidean
position if and only if it is contained in certain sets whose shape depend on the surface considered
(between opposite generatrices of the cylinder or the cone; a quadrant -the region between two
opposite parallels and two opposite meridians- of the flat torus; or an hemisphere of the sphere).
By taking the counter image by the quotient map of these sets in the plane, it can be proven [7, 4]
that P is in Euclidean position if and only if its orbit is contained in some particular convex sets
(according on the surface considered) in the plane.

Thus, the searching of MSEPs turns to the optimal placement problem of a certain convex
set containing the maximum number of points of ¢~ !(P). This can be solved by computing the
maximum depth of the arrangement of sets centered at the points of the orbit of P, so the next
result holds:

Theorem 1 Let S = ]RZ/F be an Euclidean 2-orbifold (respectively the sphere), with ' a discrete
group of motions containing no glide reflections, and a set of sites P on S. Then it can be
constructed an arrangement of convex polygons (respect. mazimum circles) such as any region of
the arrangement with mazimum depth is associated to a MSEP of P.
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The region with maximum depth in an arrangement of n convex sets can be computed in
O(nklogn) time, where k is the depth of the arrangement, for translations of a fixed convex set
in the plane [2]; or, as it is noted in [5], by modifying the algorithm given in [10], that provides
a computational time of O(n%/2logn) for an arrangement of isotetic hipercubes in R?. These
algorithms together with Theorem 1 give rise to the following assertion:

Corolary 1 A mazimal clique in a segment graph generated from a set in a 2-orbifold without
glide reflection or the sphere can be found in polynomial time.

The convex polygons cited in Theorem 1 depend on the 2-orbifold considered, and it is
e a strip for sets given on the cylinder,

e an angular sector with vertex on the center of the rotation for the cone,

an isotetic rectangle for the flat torus (generated from two orthogonal translations) and the
pillow-like surfaces (generated from rotations),

a hexagon for the skew torus (non-orthogonal translations), or

an isotetic cube for the Pillow (generated by two 7 radians rotations and a translation or by
four 7 radians rotations).

The time needed to compute the maximum depth of arrangements of such sets are summarized
in second column of Table 1. The optimum for the cylinder and the cone are due to the MSEP
search in these surfaces can be connected to the halspace depth problem; that is, to determine the
halfspace, whose boundary contains a fixed point (the center of the circumference in our case),
having less points of a given set [1]. This also assures the optimum for the flat torus and the
pillow-like surfaces.

Note as the angle between the generating translations in the skew torus cause a change of
the polygon considered that increases the computing time. This O(n!-®logn) time improves the
O(nklogn) time given in [2] for arrangement whose depth k is greater than /n.

In spite of what happen on the 2-orbifolds, the searching of a MSEP on the sphere can be done
by computing the maximum depth region of an arrangement of maximum circles on the sphere
itself. This problem is equivalent either to determine the subset of highest cardinal of a point set
in R?® whose convex hull does not contain a fixed point (the center of the sphere) or to compute
the halfspace depth of the center, and improves the O(n? logn) time given in [9].

Theorem 2 Given a set of n sites on R>, the halspace depth of a given point can be computed in
O(n?) time.

Finally, in Table 1 are also listed the number of MSEPs on each surface and the time necessary
to find all of them, together with their minimum cardinal.

3 Surfaces with glide reflections

If a glide reflection is involved, there is not a unique region G such as a set is in Euclidean position
if and only if it is contained in G. 2-orbifolds generated by this motion are non-orientables, and
it includes the Moebius strip, the Klein bottle or the projective plane. In this surfaces it is not
possible to make use of Theorem 1. If fact, opposite the other 2-orbifolds, there can be constructed
sets with O(2") MSEPs, and ©(2") time is required to report all of them. We are actually working
in determining if it is possible to find one MSEPs (and as a consequence, a clique in the segment
graph) in polynomial time.
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4 Conclusions and open problems

Problem we have worked on are summarized in Table 1; computing either one or all MSEPs in
Euclidean position and giving bounds for the number of such sets and for the minimum number
of points that take part of any of them.

Determine Find a Num. of Find all | Min. num.
[4] max. set max. sets | max. sets | of points

Cylinder O(n) O(nlogn) O(n) O(nlogn) n/2
Cone ©(n) O(nlogn) O(n) O(nlogn) n/2
Torus O(n) O(nlogn) O(n?) 0(n?) n/4
Skew Torus O(n) O(n'®logn) O(n?) 0(n?) n/4
Pillow O(n) O(n'-logn) O(n?) 0(n?) n/2
Pillow-like
surfaces O(n) O(nlogn) O(n?) 0(n?) n/2
Surfaces with
glide reflections | O(nlogn) ? o(2m) o(2m) n/4
Sphere O(n) O(n?) O(n?) 0(n?) n/2

Table 1: Scheme of problems and the current cost of solutions.
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