Cutting Triangular Cycles of Lines in Space*

Boris Aronov'

Abstract

We show that a collection of lines in 3-space
can be cut into a sub-quadratic number of
pieces, such that all depth cycles defined by
triples of lines are eliminated. This partially
resolves a long-standing open problem in com-
putational geometry, motivated by hidden-
surface removal in computer graphics.

1 Introduction

Historical background. The chief goal of
most computer graphics applications is to
correctly depict (‘render’) a synthetic 3-
dimensional scene onto the computer screen.
The geometry of the scene is often represented
by a collection of triangles. Correct render-
ing means, in particular, resolving situations
where some object partly occludes another;
we want to correctly draw the objects that lie
closer to the viewpoint, and avoid drawing the
occluded parts.

*Part of the work on this paper has been carried
out at the U.S.-Israeli Workshop on Geometric Al-
gorithms, held in Jackson Hole, WY, in the summer
of 2002. Work on the paper by Boris Aronov and
Micha Sharir has been supported by a joint grant from
the U.S.-Israeli Binational Science Foundation. Work
by Vladlen Koltun and Micha Sharir has also been
supported by a grant from the Israel Science Fund
(for a Center of Excellence in Geometric Computing).
Work by Boris Aronov was also supported by NSF
Grants CCR-99-72568 and I'TR CCR-00-81964. Work
by Vladlen Koltun was also supported by NSF Grant
CCR-01-21555 and by the Rothschild Post-doctoral
Fellowship. Work by Micha Sharir was also supported
by NSF Grants CCR-97-32101 and CCR-00-98246, and
by the Hermann Minkowski-MINERVA Center for Ge-
ometry at Tel Aviv University.

TDepartment of Computer and Information Sci-
ence, Polytechnic University, Brooklyn, NY 11201-
3840, USA; aronov@ziggy.poly.edu.

fComputer Science Division,
California, Berkeley, CA 94720-1776,
vladlen@cs.berkeley.edu.

§School of Computer Science, Tel Aviv University,
Tel-Aviv 69978, Israel, and Courant Institute of Math-
ematical Sciences, New York University, New York,
NY 10012, USA; michas@post.tau.ac.il.

University of
USA;

Vladlen Koltunt

93

Micha Sharir®

The importance of determining which parts
of the scene objects are occluded was recog-
nized in computer graphics from its very be-
ginning. Until the 1970s, ‘Hidden-Surface Re-
moval’ (HSR) was considered one of computer
graphics’ most important problems, and has
received a substantial amount of attention;
see [12] for a survey of the ten leading HSR
algorithms circa 1974.

A commonly used HSR technique is the z-
buffer [3], which produces a ‘discrete’ solution
to the problem. Given a computer screen with
a specific resolution, the z-buffer heuristically
determines for each pixel on the screen the
object that is closest to the viewpoint inside
the area represented by the pixel. Since the
z-buffer yields to efficient implementations in
hardware, it is usually the HSR method of
choice. It is not, however, applicable in all
situations. Since its output consists of a fi-
nite number of samples, instead of an analytic
description of the visible part of the scene, it
does not provide the data necessary for vector-
based output devices, and is highly inefficient
in terms of memory consumption when deal-
ing for example with high-quality large-scale
printing tasks, which require producing im-
ages at exceedingly high resolutions. An ana-
lytic solution requires little memory and stor-
age space, and can be used to produce images
of arbitrary resolution.

These considerations motivated a long study
of hidden-surface removal in computational ge-
ometry, culminating in the early 1990s with a
number of algorithms that provide both con-
ceptual simplicity and satisfactory running-
time bounds. See de Berg [2] and Dorward [6]
for overviews of these developments, and Over-
mars and Sharir [9] for a simple HSR algorithm
with good theoretical running-time bounds.

A common feature of most HSR algorithms
is that they rely on the existence of a con-
sistent depth order for the input objects. For
example, if object A occludes part of object B,
and object B partially occludes object C, it is
assumed that C' will not occlude any part of A;

Figure 1: A depth cycle defined by three tri-
angles.

the contrary situation is termed a depth cycle,
or, simply, a cycle; see Figure 1. More pre-
cisely, it is assumed that the transitive closure
of the relationship A < B, defined as A occlud-
ing part of B, is a partial order. This assump-
tion is not always satisfied in practice, where
depth cycles are easily encountered in real-
world scenes involving tree branches, indus-
trial pipes, etc. Nevertheless, the reliance on a
consistent depth order is crucial to HSR algo-
rithms, most of which begin by sorting the ob-
jects either front-to-back (e.g., the Overmars-
Sharir algorithm [9]) or back-to-front (e.g., the
classical Painter’s Algorithm [12]).

A large number of algorithms have been de-
veloped for testing whether the depth relation-
ship in a collection of triangles contains a cy-
cle with respect to a specific viewpoint; see
de Berg [2] and the references therein. How-
ever, while these algorithms help detect cycles,
they do not provide strategies for dealing with
them.

One such strategy is to eliminate all depth
cycles, with respect to a specific viewpoint, by
cutting the objects into pieces that do not form
cycles, and running an HSR algorithm on the
resulting collection of pieces. In 1980, Fuchs
et al. [7] introduced Binary Space Partition
(BSP) trees, which can be used to perform the
described cutting. However, a BSP tree may
force up to a quadratic number of cuts [10],
which is problematic in light of the fact that
virtually all of the research into hidden-surface
removal has concentrated on the development
of output-sensitive algorithms that run in sub-
quadratic time whenever possible [2, 6].

It has been open since 1980 whether one

94

can devise an algorithm that, given a specific
viewpoint and a collection of n triangles in
R3, removes all depth cycles defined by this
collection with respect to the viewpoint using
a subquadratic number of cuts. The work of
Solan [11] and of Har-Peled and Sharir [8] im-
plies that this is indeed possible, provided a
subquadratic number of cuts is known to be
sufficient. In particular, these works present
algorithms that, given a collection £ of n lines
in 3-space, perform close to O(ny/C) cuts that
eliminate all cycles defined by £ as seen from
z = —oo, where C is the minimal required
number of such cuts.! That is, if we can pro-
vide a subquadratic bound on the minimum
number of cuts that suffice to eliminate all cy-
cles defined by a collection of lines, then the
aforementioned algorithms are guaranteed to
find a collection of such cuts of (potentially
larger but still) subquadratic size.

Such an upper bound has however remained
elusive. The only progress in this direction
is due to Chazelle et al. [4], who in 1992
have analyzed the following special case of
the problem. A collection of line segments
in the plane is said to form a grid if it can
be partitioned into two subcollections of ‘red’
and ‘blue’ segments, such that all red (resp.,
blue) segments are pairwise disjoint, and all
red (resp., blue) segments intersect all blue
(resp., red) segments in the same order; see
Figure 2. Chazelle et al. [4] have shown that
if the zy-projections of a collection of n seg-
ments in 3-space form a grid, then all cycles
defined by this collection (again, as seen from
z = —0o0) can be eliminated with O(n®/?) cuts.

Our contribution. This paper describes the
first step towards obtaining subquadratic gen-
eral upper bounds on the number of cuts that
are sufficient to eliminate all cycles defined by
a collection of lines in space. Specifically, we

't can be easily shown that stating the problem
in terms of collections of lines, instead of the origi-
nal setting of triangles, does not diminish the problem
complexity but does simplify the exposition of the re-
sults. Moreover, we can assume without loss of gener-
ality that the viewpoint lies at 2 = —o0, relying on an
appropriate transformation of the 3-dimensional space.
All previous work on cutting cycles has thus been done
with regard to collections of lines or line segments that
are viewed from z = —oo [4, 8, 11]. Since any cycle
defined by a collection of line segments is also a cycle
in the collection of lines spanned by these segments,
we will concentrate on the case of lines.

Figure 2: A collection of line segments that
forms a grid.

show that all triangular cycles, which are cy-
cles formed by triples of lines, can be elimi-
nated with O(n>~1/%9+¢) cuts, for an arbitrar-
ily small € > 0. While this bound is still far
from the lower bound Q(n3/?) that Chazelle
et al. [4] have provided for this quantity, and
does not immediately apply to cycles defined
by an arbitrary number of lines, it is an essen-
tial first step towards the complete solution.
As the first nontrivial general upper bound for
this problem, since the problem’s conception
more than 20 years ago, we expect it to be
generalized and improved, and the techniques
we introduce to be extended and simplified. A
central component in our proof is a result of
independent interest concerning the unrealiz-
ability of a certain weaving pattern of lines;
see full version for details [1].

2 Cutting Triangular Cycles

Let us provide a formal definition for the prob-
lem of cutting cycles. Let £ be a set of n
non-vertical lines in 3-space in general posi-
tion. Define the depth order < on L to be
such that ¢ < ¢ if £ passes below ('; that is,
the unique vertical line A that connects ¢ and
¢' meets them at two respective points p, p’ so
that the z-coordinate of p is smaller than that
of p'. The relationship < can have cycles, and
our challenge is to obtain nontrivial bounds on
the number of cuts that need to be applied to
the lines of £, so that the depth order among
the resulting segments and rays (defined in ex-
actly the same manner as for lines) has no cy-
cles.

95

Let ¢* denote the xy-projection of a line £,
and let £* = {¢* | £ € L} denote the set of
the projections of the lines in £. A cycle ¢
in £ of the form ¢, < l, < --- < {; < 4
can be represented as a closed oriented (pos-
sibly self-intersecting or even self-overlapping)
polygonal path ¢* = pips...pyp1, where p; is
the intersection point of £7 and €7, 4 ;-

The simplest kind of a cycle in the depth or-
der is a triangular cycle defined by three lines
by, 0o, U3, satisfying £y < 0y < 05 < £1. We call
a triangular cycle ¢ a clockwise (resp., counter-
clockwise) cycle if the resulting orientation of
¢* (as we trace it in the order {f — €5 — 05 —
£37) is clockwise (resp., counterclockwise); see
Figure 3.

In this paper we confine our study to trian-
gular cycles; thus from now on, the unqualified
term ‘cycle’ will always refer to a triangular
cycle. We therefore wish to cut the lines in
L so that all such cycles are eliminated. Here
is a simple procedure that achieves this goal.
Fix a parameter k to be determined later. For
each ¢ € L, cut £ at (the points projecting on)
every k-th vertex of A(L*) lying on £*. The
total number of cuts is O(n?/k). It is easy to
see that after these cuts are performed, any
cycle ¢ that has not been eliminated has the
property that ¢* is crossed by at most 3k/2
lines of £*. Using the probabilistic analysis
technique of Clarkson and Shor [5], the over-
all number of these ‘light’ triangular cycles is
O(k*vo(n/k)), where vo(m) is the maximum
number of triangular cycles ¢ in a collection of
m lines in space, such that ¢* is a face in the
arrangement of the projected lines. (We refer
to cycles of the latter type as empty.) Hence,
we can certainly eliminate all triangular cycles

in £ using
0 (% Ky (%)
k O \k
cuts.

Let C be a family of triples (¢1,£2,/3) of
distinct lines of £, such that each triple in
C forms a counterclockwise triangular cycle
whose zy-projection is a face of A(L*). It suf-
fices to obtain a bound on |C|, since the over-
all number of triangular face cycles is at most
twice this bound. Such a bound is given in the
following theorem, whose proof constitutes the
main technical part of the full version of this

paper [1].

(1)

1 1 1 1
@uxgn gu/ ,au
I, / I \
AN /

Clockwisell Counterclockwisel

Figure 3: The two kinds of triangular cycles.

Theorem 2.1. Given a set L of n nonverti-
cal lines in R? in general position, the number
of empty triangular counterclockwise cycles de-
fined by L is O(n>~'/34t€) for any e > 0.

This theorem states that |C| is bounded by
O(n?>=1/34+¢) for any € > 0, which implies
that vo(n) = O(n?~'/34*¢). Plugging this es-
timate into (1) we conclude that the number of
cuts needed to eliminate all triangular cycles
in £ is

2 2—1/34+¢
o (™ _
o < P (%)) =
n?)
10 <? + k35/34—5n2—1/34+5))

Choosing k = n'/%9 and replacing & by an ap-

propriate multiple, we obtain the main result
of this paper.

Theorem 2.2. A set L of n nonvertical lines
in R® in general position can be cut into
O(n? 1/69t2) segments and rays, for any e >
0, such that no triangular cycles are present in
the depth order of these portions of the lines.

The interested reader is referred to the full
version [1] for the missing technical details.

Acknowledgments

The authors wish to express their gratitude
to Pankaj Agarwal, Sariel Har-Peled and
Shakhar Smorodinsky for insightful sugges-
tions concerning the material presented in this

paper.

96

References

[1] B. Aronov, V. Koltun and M. Sharir.
Cutting triangular cycles of lines in space.
http://www.cs.berkeley.edu/~vladlen/cycles-

conf.zip
M. de Berg, Ray Shooting, Depth Or-

ders and Hidden Surface Remowval, Lec-
ture Notes Comput. Sci., 703, Springer
Verlag, Berlin, 1993.

E. Catmull, A Subdivision Algorithm for
Computer Display of Curved Surfaces,
Ph.D. Thesis, UTEC-CSC-74-133, Dept.
Comput. Sci., University of Utah, 1974.
B. Chazelle, H. Edelsbrunner, L.J.
Guibas, R. Pollack, R. Seidel, M. Sharir
and J. Snoeyink, Counting and cutting
cycles of lines and rods in space, Comput.
Geom. Theory Appls. 1 (1992), 305-323.
K. Clarkson and P. Shor, Applications
of random sampling in computational ge-
ometry, II, Discrete Comput. Geom. 4
(1989), 387-421.

[6] S. E. Dorward, A survey of object-space
hidden surface removal, Internat. J. Com-
put. Geom. Appl. 4 (1994), 325-362.

H. Fuchs, Z. M. Kedem and B. Naylor,
On visible surface generation by a pri-
ori tree structures, Comput. Graph. 14
(1980), 124-133.

S. Har-Peled and M. Sharir, On-line point
location in planar arrangements and its
applications, Discrete Comput. Geom. 26
(2001), 19-40.

M. H. Overmars and M. Sharir, A sim-
ple output-sensitive algorithm for hidden
surface removal, ACM Transactions on
Graphics 11 (1992), 1-11.

M. S. Paterson and F. F. Yao, Effi-
cient binary space partitions for hidden-
surface removal and solid modeling, Dis-
crete Comput. Geom. 5 (1990), 485-503.
A. Solan, Cutting cycles of rods in space,
Proc. 14th Annu. ACM Sympos. Comput.
Geom., 1998, 135-142.

I. E. Sutherland, R. F. Sproull and R.
A. Schumacker, A characterization of ten
hidden-surface algorithms, ACM Com-
put. Surv. 6 (1974), 1-55.

[7]

