An approach to exhaustive generation of objects without
testing on isomorphisms.
Application of the method to the cell growth problem

Lyuba Alboul Alexandre Netchaev*
Sheffield Hallam University, UK University of Twente, the Netherlands
e-mail: L.Alboul@shu.ac.uk e-mail: netchaev@math.utwente.nl

1 Introduction

Generating and enumerating a specific class of objects are fundamental problems in discrete math-
ematics and related fields. In this communication we discuss a new approach to the problem of
generation that allows to avoid testing on isomorphisms without producing duplicates. We il-
lustrate our approach by presenting several algorithms to generate exhaustively some classes of
non—isomorphic combinatorial objects, such as dissectible polyhedra and polygons, and triangular
animals.

The usual approach to generate a class of objects is incremental: one starts from an initial object
and adds one generating block (unit) at a time. Depending on the objects to be generated, the
generating unit might be a vertex, an edge, a triangle, and so on. In the generating process one
encounters, in general, two types of procedures. One procedure aims at obtaining objects with
m+1 generating blocks from an object with m generating blocks, and the other — at obtaining from
an object with m generating blocks another object with the same number of generating blocks
by exchanging two generating blocks at a time, or by replacing a fixed group of generating blocks
by another fixed group. The first procedure occurs in various combinatorial problems, when all
objects of some class must be enumerated up to a given number of generating blocks. The second
procedure might be a sub—procedure of the first procedure. One encounters the second procedure
in its ‘pure’ form, for example, in the triangulation problem, when one needs to transform a trian-
gulation of n points into another triangulation. In a plane such a transformation often is flipping
an edge, and in a space - replacing two adjacent tetrahedra by the other three, and vice versa.
In both procedures only one operation is performed at each step: adding a generating block, or
exchanging generating blocks.

One of the most difficult tasks, due to its high computational expenses, in the process of enu-
merating/generating combinatorial objects is to avoid duplicates, especially if one deals with the
problem of generating unlabelled objects. In this case the problem of eliminating isomorphic
objects, or controlling isomorphisms, becomes crucial. For this reason many algorithms are re-
stricted to generation of so-called rooted objects, when one ‘detail’ of the object is fixed (for
example, a ‘node’/vertex, or a ‘side’/edge) [2]. Choosing a root destroys most of the symmetries,
which makes enumeration/generation easier. However, the number of rooted objects is larger then
that of non-rooted ones, and some non-isomorphic rooted objects are still isomorphic in the usual
setting. Therefore, if we want to derive from ‘rooted’ objects non—isomorphic non-rooted ones,
an additional check on isomorphisms is needed. Indeed, if an object has no symmetries, we can

*The research of the author is partially supported by the NWO (STW) (Dutch Organisation for Scientific
Research), project No. TWI4816

109

presume that it does not matter what edge or vertex we take as a ‘root’, however if an object
has symmetries, then some roots will be equivalent and therefore isomorphic non-rooted objects
will be produced in the process of generating. On the other hand, we cannot completely rule out
the possibility of generating isomorphic objects at some step of the generating process even if the
initial object has no symmetries.

In our method we use a heuristic idea to fix several ‘roots’ at each step of the generating process
in order to avoid repetitions of the objects and the consequent testing on isomorphisms. This idea
leads to the logical conclusion: at each step of generation to add not only one generating block at
time, but, depending on the situation, a collection of these generating blocks.

We apply our method to generate explicitly and exhaustively several types of objects: non—
isomorphic simplicial dissectible polyhedra, their two-dimensional counterparts, and so—called ¢ri-
angular animals. The generating block is a vertex (together with a corresponding star). Therefore,
in the case of dissectible polyhedra we use tetrahedra as generating blocks, and in the case of ‘dis-
sectible’ polygons - triangles. We refer to generating blocks in both cases as generating vertices.
In our approach at each step of the generating process only a fixed number of generating vertices
are simultaneously added with the advantage that no testing on isomorphisms is required. Our
method is not incremental, but it allows for parallelisation. In such a setting the problem is similar
to the problem of simultaneously edge flipping in triangulations, recently arisen in computational
geometry [6]. In [1] our first algorithm was introduced. In this communication we shortly describe
a theoretical background of constructive enumeration of dissectible polyhedra without testing on
isomorphisms, and then present several new algorithms to generate ‘dissectible’ polygons and
triangular animals.

2 Main definitions and concepts
A dissectible polyhedron is inductively defined as follows [3]:

Definition 1 1. A triangle and a tetrahedron are both dissectible polyhedra.

2. A dissectible polyhedron with (n + 1) tetrahedra is obtainable from a dissectible polyhedron
P with n tetrahedra by adding a new tetrahedron having precisely an exterior triangle in
common with P.

The concept of dissectible polyhedron is a natural generalisation of the concept of dissections of a
polygon which dates back to Euler. Euler formulated this problem as enumeration of the ways of
triangulating a convex polygon by means of nonintersecting diagonals [5]. This problem is equiv-
alent to the problem of dissecting a disk into triangular regions, since the boundary of a polygon
is homeomorphic to the boundary of a disc. There are many works dedicated to the problem
of dissecting a polygon or a disc. In the later case not only triangulated regions are considered
[4]. The papers are mostly dedicated to the problem of enumerating dissections combinatorially.
The interested reader is referred to the bibliography in [3], where also a method for combinatorial
enumeration of dissectible polyhedra is given.

Our method deals with constructive enumeration of dissectible polyhedra, or, in other words, with
their explicit generation. By means of the method we generate exhaustively dissectible polyhe-
dra and polygons without duplications and testing on isomorphism. Both objects, a dissectible
polyhedron and a polygon, represent triangulations. For simplicity, we refer to them as dis-
sectible triangulations. We generate all possible groups of automorphisms for a given dissectible
triangulation (called a preceding triangulation) and based on this generation we reconstruct all
non-isomorphic triangulations that are ‘derived’ from the given one. We call those triangulations
successive triangulations. The processes of generating groups of automorphisms and reconstruct-
ing triangulations are superposed, so the number of operations in the algorithm is reduced. In

110

order to avoid producing duplicates we add simultaneously a number of new generating vertices.
The triangulations that are generated from different preceding ones, are then non—isomorphic by
construction.

Essentially, our procedure consists of the following steps:
1. Take an initial (preceding) triangulation; define its groups of automorphisms.

2. Insert new vertices in such a way, that each group of automorphisms of the initial triangu-
lation yields only one new (successive) triangulation (a ’derived’ representative of the given
automorphism group).

3. Repeat the above two steps for each new obtained triangulation.

Note. Only at the initial step a full group of automorphisms is generated. At each following step
a restricted check on automorphisms suffices.

3 Results

On the base of our method several algorithms have been developed, each with a different number
of generating vertices. In each subsequent algorithm we were able to reduce considerably this
number. We denote the number of generating vertices by GV;, where i corresponds to the number
of the related algorithm.

In the first algorithm, developed for dissectible polyhedra, GV} is not less than k; k is the number
of vertices of degree three in a triangulation with n vertices. Suppose, that GV; is equal to [, then
the number [satisfies the following condition:

k<l<2(n—2), (1)

where k is a number of vertices of degree 3 of the initial/preceding triangulation, and 2(n — 2) is
the number of all faces (triangles) of a triangulation with n vertices. Indeed, we cannot add more
than 2(n — 2) vertices to a triangulation with n vertices. We add new vertices in a special way: to
each star of a vertex of degree 3 one new vertex is always added. We define the vertices of degree
three to which stars we add a new vertex as active vertices, and corresponding stars - as active
stars. A new vertex is always added to each active star (to one of three possible faces) and the
remaining [— k points are added to some other faces of the same triangulation with n vertices.
The latter faces do not need to belong to the stars of vertices of degree three. The remaining [— k
vertices are added not simultaneously, but one by one. We call our method k-incremental, since
at the first step we always add k vertices simultaneously, but the further steps are incremental,
because at each next step we add only one vertex from the remaining | — k vertices that may
be added. Therefore GV can be presented as GV S + GV R, where GV S is fixed and determined
by the number of active vertices, and GV R varies. This algorithm allows a direct analogue for
dissectible polygons. In this case k is the number of vertices of degree 2, GV does not exceed
n, where n is the number of boundary edges (equal to the number of vertices in the preceding
triangulation). The following theorem is proved:

Theorem 2 All generated dissectible triangulations are non-isomorphic and their generation is
ezhaustive.

We have developed two more algorithms for dissectible polygons. The GV S has been significantly
reduced. In the best algorithm is equal to 2 or 3, depending on the situation. We modify then this
algorithm to generate triangular animals. This problem belongs to so-called cell-growth problem
[9]. An animal is constructed from a collection of equivalent cells. A cell can be an equilateral
triangle, a square or a hexahedron. The cells must be non—overlapping. Recently, the cell-growth
problem has attracted attention of specialists in various fields (see, for example, [7]). Literature

111

dedicated to generation of animals is scarce. One of the recent works is [8]. In this work a
constructive enumeration of triangular animals up to 13 cells (triangles) is given, however, the
algorithm requires testing on isomorphisms . We have developed algorithms to generate simply-
connected and multiply-connected triangular animals without internal vertices. Simply—connected
triangular animals have been easily generated up to 18 cells (20 vertices). The results of generation
are given in Tab. 1.

Number of cells 13 14 15 16 17 18
Number of animals | 7541 | 20525 | 55633 | 152181 | 416188 | 1143526

Table 1: Counts of simply—connected triangular animals.

4 Conclusion

We presented a new approach to the problem of constructive enumeration of some classes of
the objects, that excludes testing on isomorphisms. By simultaneously adding several generating
blocks and by treating this operation as a primitive operation, one can expect a considerable
reduction of computational cost. Another advantage is that our approach divides the computation
into mutually disjoint sub-computations. In another words, our computation process is a forest
structure. Sub-computation processes (trees) are completely independent, and therefore can be
generated on separate processors. The open problem is to generalise the method to more complex
objects. The method might also be useful in simulation of growth of other structures, such as
molecular structures, corals, fractals, where a similar growth pattern is repeated at each subsequent
growth step.

References

[1] Alboul, L., Netchaev, A.: Isomorphic—ree generation of some classes triangulations without
repetitions. In Proc. of EWCG 2002 (European Workshop in Computational Geometry), April
10-12, 2002, Warsaw, pp. 116-117

[2] Avis, D.: Generating rooted triangulations without repetitions. Algorithmica, 16 (1996), 618—
632.

[3] Beineke, L.W., Pippert, R.E.: Enumerating dissectible polyhedra by their automorphism
groups. Can. J. Math., 26(1):50-67, 1974.

[4] Brown, W.G.: Enumeration of quadrilangular dissections of the disc. Can. J. Math., 17 (1965),
302-317.

[5] Euler, L.: Novi commentarii academiae scientiarium imperialis petropolitanae 7 (1758-1759),
13-14.

[6] Galtier, J., Hurtado, F., Noy, M., Perennes, S., Urrutia, J.: Parallel edge flipping. See:
http://www-ma2.upc.es/ hurtado/flipcorner.html

[7] Ivanov, A.O, Tuzhilin, A.A.: Branched geodesics. Geometrical theory of local minimal net-
works. (in Russian) Russian Research in Mathematics and Science, Vol. 5. The Elwin Mellen
Press 1999. ISBN 0-7734-3178-0.

[8] Konstantinova, E.: Constructive enumeration of triangular of triangular animals. See:
http://com2mac.postech.ac.kr /papers/2000/00-22.ps

[9] Palmer, E.M.: Variations of the cell-growth problem. In: Graph theory and applications.
Proc. Conf. western Michigan University, May 10-13 (1972), pp. 215-224, Berlin 1972.

112

