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Abstract

Given a set S of n points in the plane and a fixed point o, we introduce the Voronoi diagram of S
anchored at o. It will be defined as an abstract Voronoi diagram that uses as bisectors the following
curves. For each pair of points p,q in S, the bisecting curve between p and g is the locus of points z in
the plane such that the line segment 07 is equidistant to both p and g. We show that those bisectors have
nice properties and, therefore, this new structure can be computed in O(nlogn) time and O(n) space.
Also, under a slightly different model of computation, we prove that the dynamic version of this diagram
can be built in O(n?Ags42(n)) time complexity, where s is a constant depending on the function that
describes the motion of the points. Both static and dynamic diagrams can be used for solving maximin
location problems, where the goal is the placement of a line segment connecting two fixed curves.

1 Introduction

Given a set of n sites in a continuous space, the subdivision of the space into regions, one per site, according
to some influence criterion is a central topic in Computational Geometry and it has been applied to many
fields of science. The standard name for this geometric structure is due to Voronoi, who proposed the
first formalization. Originally, this structure was used for characterizing regions of proximity for the sites.
Since then, mMany extensions and generalizations have been proposed (see the surveys [1, 5, 9]). Also,
other general approachs have been introduced [4, 8] where the concepts of site or distance functions are not
explicitly used. In this paper, we introduce an abstract Voronoi diagram in the sense of [8], the anchored
Voronoi diagram. In section 2, we formally define this structure, give some properties and show how to
compute it; we also give an application to a facility location problem. In section 3, we deal with the dynamic
version of the anchored diagram; in particular, we discuss the topological matters that lead to its construction
and, finally, we show how to apply this structure to solving some maximin problems. Those problems consist
of finding the bridge that connects to curves so that the minimum distance from the bridge to a given point
set is maximized. Concluding remarks of the paper are put forward in Section 4 .

2 The anchored Voronoi diagram

2.1 Definition and properties

Given a set S of n points in the plane, the Euclidean distance between two points p and ¢ will be denoted
by d(p,q). We define an anchored segment as a line segment when the initial point is fixed. Without loss
of generality, we will consider the anchor to be the origin. Finally, the distance between a point p and an
anchored segment connecting o with a point z € IR will be defined as d(p, o) := min{d(p,q) : ¢ € oz }.
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For any two different points p, ¢ in S, a bisecting curve L(p, q) is defined as the locus of points z in the plane
such that the line segment o is equidistant to both p and g, that is, L(p, q) = {z € IR : d(p,o%) = d(q,0%)}.
An exhaustive study of the properties and the shape of L(p,q) have been carried out in [2]. L(p,q) is
homeomorphic to a line and dissects the plane into two open domains D(p, q) and D(q, p) having L(p,q) as
boundary. We define the Anchored Voronoi Region AV R(p, S) to be the intersection of the domains D(p, q),
where ¢ € S\ {p}. Then the Anchored Voronoi Diagram AV D(S) of the bisecting curves L(p, q) is defined as
the union of all boundaries of at least two Voronoi region have in common. In Figure 1, all types of bisecting
curves are shown. Note that in the case (a.3) L(p, q) includes a region. In order to simplify the discussion
and for this degenerate situation,we will take L(p,q) = {z € IR? |d(p,z) = d(q,z)} as the bisector of the
line segment pgq.
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Figure 1: The locus L(p, q). Figure 2: AV D(S) for four points.

An edge can be composed into pieces which are either half-lines, or line segments, or arcs of a curve of degree
four or arcs of a circle (refer to Figure 2). A vertex of AV D(S) (defined by at most three points) can either
be a point or a half-line or an arc of circle. Note that vertices are defined as the intersections of the Voronoi
edges.

2.2 Computation

In order to compute the AV D(S), the divide & conquer approach given in [8] can be used. The system
L ={L(p,q) : p,q € S,p # q} is called admissible iff for each subset S’ of S of size at least 3 the following
conditions are fulfilled: (1) the Voronoi regions are path-connected; (2) each point of the plane lies in a
Voronoi region or on the Voronoi diagram; (3) the intersection of two bisecting curves only consists of
finitely many components. By using non-trivial geometrical properties, we have proved the following results.

Lemma 2.1 The set of locus L is an admissible system.

Theorem 2.1 The Anchored Voronoi Diagram of a set of point S in the plane can be constructed in
O(nlogn) time and O(n) space.

2.3 Application
We next show how to use the AV D(S) as a data structure for computing a solution for a location maximin
problem. The obnoxious anchored bridge problem is stated as follows:

OABP: Let S be a set of n points in IR*\{o} and let C be a curve (typically, in most applications, an
algebraic curve of constant degree). Compute a line segment connecting o with a point © on C for which
minye s d(p, 0T) is mazimized.

Typically, in most applications, curve C will be an algebraic curve of constant degree, a trigonometric function
or similar.The following results solve this problem.
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Lemma 2.2 There ezists a point x* which is the intersection between the curve C and the structure AV D(S)
such that the segment ox* is a solution for the problem OABP.

Theorem 2.2 Once the AV D(S) is given, the problem OABP can be solved in linear time and space.

At this point, we should note that there are certain operations here that exceed the power of the usual real
RAM model. The model of computation should be augmented with the pertinent primitives as neccesary.

3 The dynamic anchored Voronoi diagram

We are given a finite set of n > 3 points S = {p1,...,pn} each moving along a polynomial trajectory of
maximum degree s, for some constant s. Let p;(t) denote the position of point p; at time ¢. We further
assume that the points move without collisions.

Definition 3.1 Given an anchored segment S of length | and € > 0, the locus of points that are at distance
€ from S is called an anchored hippodrome centered at S of radius €.

In our context, we consider the points in general position when no four points are co-hippodromal, in other
words, there not exists a hippodrome with four points on the boundary. We study how the structure
AV D(S(t)) changes with time. Similarly to the ordinary dynamic Voronoi diagram [6], AV D(S) changes
continuously but its combinatorial structure only changes at critical values of . We will call the dual graph
of AVD(S(t)) the anchored graph AG(S(t)).

3.1 Topological changes

In order to obtain a bound of the number of changes in AG(S(t)) we describe how an edge can be removed
or added to the graph as the points move. In the following, we characterize these elementary changes.

It follows from the definition of the anchored dual graph that there is an edge between two points if and only
if there exists an empty hippodrome that passes through those points (The converse is also true.) Let p;(t),
p;(t) be two points in S(t) and let be given a hippodrome that have them on its boundary. This hippodrome
determines a unique line segment, one of whose endpoints is the origin and the other is a point x;;(t). Of
course, x;;(t) lies on the Voronoi edge contained in the bisector curve L(p;(t),p;(t)). Let d;;(t) denote the
distance from point p;(t) to line segment ox;;(t). When a point py(t) enters into an empty hippodrome
given by points p;(t), p;(t), then a combinatorial change takes place. Such change will correspond to an
intersection between function d;;(t) and another function d; () or djx(t). What really matters here is when
the first point that enters into the empty hippodrome, which results in only considering the lower enveloppe
of the functions {d;;(t),i # j}. By examining those intersections, we can give an upper bound on the number
of topological changes.

We can see that any pair of functions {d;;(t),i # j} intersects at most 6s times. Hence, the number of
breakpoints of the lower envelope of the distance functions is O(Ags+2(n)). By repeating this argument for
all pair of points in S(¢), we obtain the desired upper bound. We thus conclude with the following theorem.

Theorem 3.1 The number of topological changes of the combinatorial structure of AV D(S(t)), when each
point in S moves along a trajectory defined by polynomial of mazimum degree s, is O(n*Xgs12(n)).

3.2 Computing the diagram

The topological structure of an anchored Voronoi diagram under continuous motions of the points in S can
be maintained dynamically. By using a similar approach to those in [3, 7], we are able to update the changes
in O(logn) time.
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Theorem 3.2 The dynamic AV D(S) can be constructed in O(n?*Xgs12(n)logn) time.

3.3 Application

With the dynamic anchored Voronoi diagram we can solve a general problem for locating an obnoxious
bridge. Consider the problem of Section 2.3 but we suppose the anchor point o can be moved through a
polynomial trajectory. The problem now is:

OBP: Let S be a set of n points in IR*, P be a polynomial curve and C a curve. Compute a line segment
connecting P with C for which minpeg d(p,l) is mazimized.

Observe that we can solve this problem by fixing an endpoint of the segment [ on a point of P and moving
the points in S along such a trajectory. Recall that the O ABP problem can be solved by finding the Voronoi
vertices for which the segment is the center of the largest empty hippodrome. Then, as ¢ varies, we maintain
for each Voronoi vertex the starting time to at which appears and also the time ¢; at which disappears.
Between tg and 1, we compute when the width of the corresponding hippodrome is maximized. Finally, by
keeping track of those maximum values, the general problem OBP can be solve within the time obtained
for the computation of the dynamic anchored Voronoi diagram.

4 Conclusion

We have introduced in this paper the anchored Voronoi diagram as an abstract Voronoi diagram. The
bisecting curves are induced by the distance to a line segment anchored at the origin. Also, for the dynamic
version we have found an upper bound based in a Davenport-Schinzel argument. We have finished by showing
an application, namely, solving a maxmin bridge problem.
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