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Abstract

In traditional colored range-searching problems, one wants to store a set of n objects with

m distinct colors for the following queries: report all colors such that there is at least one

one object of that color intersecting the query range. Such an object, however, could be an

`outlier' in its color class. Therefore we consider a variant of this problem where one has to

report only those colors such that at least a fraction � of the objects of that color intersects

the query range, for some parameter � . We present eÆcient data structures for such queries

with orthogonal query ranges in sets of colored points, and for point stabbing queries in sets

of colored rectangles.

1 Introduction

Motivation. The range-searching problem is one of the most fundamental problem in compu-
tational geometry. In this problem we wish to construct a data structure on a set S of objects
in R

d , such that we can quickly decide for a query range which of the input objects it inter-
sects. The range-searching problem comes in many 
avors, depending on the type of objects in
the input set S, on the type of allowed query ranges, and on the required output (whether one
wants to report all intersected objects, to count the number of intersected objects, etc.). The
range-searching problem is not only interesting because it is such a fundamental problem, but also
because it arises in numerous applications in areas like databases, computer graphics, geographic
information systems, and virtual reality. Hence, it is not surprising that there is an enormous
literature on the subject|see for instance the surveys by Agarwal [1], Agarwal and Erickson [2],
and Nievergelt and Widmayer [4].

In this paper, we are interested in range searching in the context of databases. Here one
typically wants to be able to answer questions like: given a database of customers, report all
customers whose ages are between 20 and 30, and whose income is between $50,000 and $75,000.
In this example, the customers can be represented as points in R

2 , and the query range is an
axis-parallel rectangle.1 This is called the (planar) orthogonal range-searching problem, and it has
been studied extensively.

There are situations, however, where the data points are not all of the same type but fall into
di�erent categories. Suppose, for instance, that we have a database of stocks. Each stock falls into
a certain category, namely the industry sector it belongs to|it, energy, banking, food, chemicals,
etc. Then it can be interesting for an analyst to get answers to questions like: \In which sectors
companies had a 10{20% increase in their stock values over the past year?" In this simple example,
the input data can be seen as points in 1D (namely for each stock its increase in value), and the
query is a one-dimensional orthogonal range-searching query.

Now we are no longer interested in reporting all the points in the range, but only the categories
that have points in the range. This means that we would like to have a data structure whose
query time is not sensitive to the total number of points in the range, but to the total number of
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categories in the range. This can be achieved by building a suitable data structure for each category
separately, but this is ineÆcient if the number of categories is large. This has led researchers to
study so-called colored range-searching problems : store a given set of colored objects|the color
of an object represents its category|such that one can eÆciently report those colors that have at
least one object intersecting a query range [3, 5, 6].

We believe, however, that this is not always the correct abstracted version of the range-
searching problem in categorical data. Consider for instance the stock example sketched earlier.
The standard colored range-searching data structures would report all sectors that have at least

one company whose increase in stock value lies in the query range. But this does not necessarily
say anything about how the sector is performing: a given sector could be doing very badly in
general, but contain a single `outlier' whose performance has been good. It is much more natural
to ask for all sectors for which most stocks, or at least a signi�cant portion of them, had their
values increase in a certain way. Therefore we propose a di�erent version of the colored range-
searching problem: given a �xed threshold parameter � , with 0 < � < 1, we wish to report all
colors such that at least a fraction � of the objects of that color intersect the query range. We call
this a signi�cant-presence query, as opposed to the standard presence query that has been studied
before. (We also have some results on the case where � is not �xed beforehand, but part of the
query. Due to lack of space, these results are omitted.)

Problem statement and results. We study signi�cant-presence queries in categorical data in
two settings: orthogonal range searching where the data is a set of colored points in Rd and the
query is a box, and stabbing queries where the data is a set of colored boxes in Rd and the query
is a point. In this extended abstract, we only discuss our results on orthogonal range searching.
We also omit several of the proofs.

Let S = S1 [ � � � [ Sm be a set of n points in Rd , where m is the number of di�erent colors
and Si is the subset of points of color class i. Let � be a �xed parameter with 0 < � < 1. We are
interested in answering signi�cant-presence queries on S: given a query box Q, report all colors i
such that jQ\Sij � � �jSij. For d = 1, we present a data structure that uses O(n) storage, and that
can answer signi�cant-presence queries in O(logn + k) time, where k is the number of reported
colors. Unfortunately, for d � 2, we have not been able to design a data structure using near-linear
storage with logarithmic query time for this problem. As a data structure with quadratic or more
storage is prohibitive in practice, we study an approximate version of the problem. More precisely,
we study "-approximate signi�cant-presence queries : here we are required to report all colors i
with jQ\Sij � � � jSij, but we are also allowed to report colors with jQ\Sij � (1�")� � jSij, where
" is a �xed positive constant. For such queries we have developed a data structure that uses only
O((1=(�")2d�1m)1+Æ) storage, for any Æ > 0, and that can answer queries in O(logn + k) time,
where k is the number of reported colors. Note that the amount of storage does not depend on n,
the total number of points, but only on m, the number of colors. This should be compared to the
results for the previously considered case of presence queries on colored points sets. Here the best
known results are: O(n) storage with O(logn + k) query time for d = 1 [6], O(n log2 n) storage
with O(log n+ k) query time for d = 2 [6], O(n log4 n) storage with O(log2 n+ k) query time for
d = 3 [5], and O(n1+Æ) storage with O(logn+ k) query time for d � 4 [3]. Note that these bounds
all depend on n, the total number of points; this is of course to be expected, since these results
are all on the exact problem, whereas we allow ourselves approximate answers.

2 Orthogonal range queries

One of the diÆculties in signi�cant-presence queries is that the problem is not readily decom-
posable: we cannot decide whether a color is signi�cantly present in a range Q if we just know
whether or not certain subsets of that color are signi�cantly present in Q. In this respect, standard
presence queries are easier: a color is present in Q i� a subset of that color is present in Q. Hence,
our approach is to �rst reduce signi�cant-presence queries to standard presence queries. We do
this by introducing so-called test sets.
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Test sets for orthogonal range queries Let S be a set of n points in Rd , and let � be a �xed
parameter with 0 < � < 1. A set T of boxes|that is, axis-parallel hyperrectangles|is called a
� -test set for S if the following holds:
� any box from T contains at least �n points from S;
� any query box Q that contains at least �n points from S fully contains at least one box from T .

This means that we can answer a signi�cant-presence query on S by answering a presence query
on T : a query box Q contains at least �n points from S if and only if it contains at least one box
from T . We did not yet reduce the problem to a standard presence-query problem, because T
contains boxes instead of points. However, we can map the set T of boxes in Rd to a set of points
in Reals2d, and the query box Q to a box in R2d , in such a way that a box b 2 T is fully contained
in Q if and only if its corresponding point in Reals2d is contained in the transformed query box.2

This means we can apply the results from the standard presence queries on colored point sets.
It remains to �nd small test sets. As it turns out, this is not possible in general: below we

show that there are point sets that do not admit test sets of near-linear size. Hence, after studying
the case of exact test sets, we will turn our attention to approximate test sets.

Exact test sets. It is easy to see that any minimal box containing at least �n points from
S|that is, any box b containing at least �n points from S such that there is no box b0 6= b with
b0 � b and containing �n or more points|must be a box in T , and that the collection of all such
minimal boxes forms a � -test set. Hence, the smallest possible test set consists exactly of these
minimal boxes. In the 1-dimensional case a box is a segment, and a minimal segment is uniquely
de�ned by the point from S that is its left endpoint. This means that any set of n points on the
real line has a test set of size (1 � �)n + 1. Unfortunately, the size of test sets increases rapidly
with the dimension, as the next lemma shows.

Lemma 2.1 For any set S of n points in Rd , there is a � -test set of size O(�d�1n2d�1). Moreover,
there are sets S for which any � -test set has size 
(�d�1n2d�1). (proof omitted from this abstract)

Approximate test sets. The worst-case bound from Lemma 2.1 is quite disappointing. There-
fore we now turn our attention to approximate test sets: a set T of boxes is called an "-approximate

� -test set for a set S of n points if
� any box from T contains at least (1� ")�n points from S;
� any query box Q that contains at least �n points from S fully contains at least one box from T .

This means we can answer "-approximate signi�cant-presence queries on S by answering a presence
query on T .

Lemma 2.2 For any set S of n points in R
d (d > 1) and any " with 0 < " < 1=2, there is an

"-approximate � -test set of size (2d� 1)2d�1=("2d�1�2d�2). Moreover, there are sets S for which
any "-approximate � -test set has size 
((1=")2d�1(1=�)d).

Proof. We will prove an upper bound of ((2d � 1)=("�))2d�1 here; an improvement of a factor �
can be attained with a divide-and-conquer variation of the construction described below. Due to
lack of space, we omit the details of the divide-and-conquer approach from this extended abstract.

To prove the upper bound of ((2d � 1)=("�))2d�1, we proceed as follows. We construct a
collection H1 of (2d�1)=("�) hyperplanes orthogonal to the x1-axis, such that there are "�n=(2d�
1) points of S between any pair of consecutive hyperplanes.3 We do the same for the other axes,
obtaining sets H2; : : : ; Hd of hyperplanes. From these collections of hyperplanes we construct
our test set as follows. Take any possible subset H� of 2d � 1 hyperplanes from H1 [ � � � [ Hd

such that H1 up to Hd�1 each contribute exactly two hyperplanes to H�, and Hd contributes one
hyperplane. Let b(H�) be the smallest box that is bounded by the hyperplanes from H�, contains

2In fact, the transformed box is unbounded to one side along each coordinate-axis, so it is a d-dimensional
`octant'.

3If there are more points with the same x1-coordinate, we have to be a bit careful. The details are omitted from
this extended abstract.
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exactly (1�")�n points from S, and lies above the hyperplane we picked from Hd. If b(H
�) exists,

we add it to our test set T . Clearly, the size of T is at most ((2d� 1)=("�))2d�1.
We now argue that T is an "-approximate � -test set for S. By construction, every box in

T contains at least (1 � ")�n points, so it remains to show that every box Q that contains at
least �n points from S fully contains at least one box from T . To see this, observe that for

any i with 1 � i � d, there must be a hyperplane h
(i)
1 2 Hi that intersects Q and has at

most "�n=(2d � 1) points from Q \ S `below' it. Similarly, there is a hyperplane h
(i)
2 2 Hi

intersecting Q with at most "�n=(2d� 1) points from Q\S `above' it. Note that h
(i)
2 6= h

(i)
1 . Now

consider the box b bounded by the hyperplanes in the set H� := fh
(1)
1 ; h

(1)
2 ; : : : ; h

(d�1)
1 ; h

(d�1)
2 ; h

(d)
1 g

and unbounded in the positive xd-direction. The number of points from S in b \ Q is at least
jQ\Sj � (2d� 1) � "�n=(2d� 1) � (1� ")�n: Hence, the box b(H�) 2 T is not larger than b\Q
and, hence, it is contained in Q.

The lower-bound construction is omitted in this extended abstract. �

Putting it all together. To summarize, the construction of our data structure for "-approximate
signi�cant-presence queries on S = S1 [ � � � [ Sm is as follows. We construct an "-approximate
� -test set Ti for each color class Si. This gives us a collection of O(1=("2d�1�2d�2)m) boxes in Rd .
We map these boxes to a set P of colored points in R2d , and construct a data structure for the
standard colored range-searching problem (that is, presence queries) on P , using the techniques
of Agarwal et al. [3]. Their structure was designed for searching on a grid, but using the standard
trick of normalization|replace every coordinate by its rank, and transform the query box to a
box in this new search space in O(log n) time before running the query algorithm|we can employ
their results in our setting.

The same technique works for exact queries, if we use exact test sets. This gives a good result
for d = 1, if we use the results from Gupta et al. [5] on quadrant range searching.

Theorem 2.1 Let S = S1 [ � � � [ Sm be a colored point set in Rd , and � a �xed constant with
0 < � < 1. For d = 1, there is a data structure that uses O(n) storage such that exact signi�cant-
presence queries can be answered in O(log n+ k) time, where k is the number of reported colors.
For d > 1, there is, for any " with 0 < " < 1=2 and any Æ > 0, a data structure for S that uses
O((1=("2d�1�2d�2)m)1+Æ) storage such that "-approximate signi�cant-presence queries on S can
be answered in O(log n+ k) time.
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