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Abstract

We present an algorithm for constructing from a set of sampled sections a piecewise-linear
approximation of an unknown planar subdivision, including generalized Voronoi diagrams as
outstanding example. The input of the algorithm is a set of lines uniformly distributed over the
theoretical subdivision. For each input line, the ordered set of sections in which the line and
the planar subdivision intersect is given or computed. The algorithm outputs a triangulation
from which the approximation of the unknown subdivision, both in the topological and the
metrical sense, can easily be extracted. The correctness of the algorithm and the evaluation
of its time complexity follow from results of Integral Geometry and Geometric Probability.

1 Introduction

We present an algorithm that allows to construct a piecewise-linear approximation of an unknown
planar subdivision from a set of sampled line-sections. The input of our algorithm is a sufficiently
“dense” set of lines uniformly distributed over a bounding box together with the ordered set of
sections in which each line intersects the theoretical planar subdivision. We want to remark that,
in the context of integral geometry and geometric probability, uniformly distributed means that
the probability that a line intersects a piece of the boundary of and edge, independent of its
location and orientation, is proportional to its length [17]. The algorithm outputs a triangulation
from which a planar subdivision approximating the unknown planar subdivision can easily be
extracted. The input lines are sequentially processed and the method is progressive, in the sense
that for each line we obtain a new approximation from the previous one.

Some of the ideas used in our algorithm extend previous work on reconstructing planar shapes
from random sections as a problem related to curve reconstruction [6]. Different cases of the curve
reconstruction problem have been treated: uniformly or non-uniformly sampled points, closed or
open curves, smooth or non-smooth curves and many algorithms have been proposed for all these
cases [2, 3, 4, 7, 8,9, 10, 11, 13, 14, 15]. The main difference between these algorithms and
ours is that all them compute the reconstruction off-line, while our algorithm works on-line. As
mentioned above, the fact that the random lines are sequentially processed as they arrive allows
also progressive refinement that may be tuned by the user.

The method can be applied to the construction of planar subdivisions, and in particular to
generalized Voronoi diagrams, that correspond to two-dimensional scenarios for which the whole
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structure is difficult to obtain, but such that its intersection with any given line is easy to compute
or to obtain with some device.

Voronoi diagrams are a fundamental structure in computational geometry, both for the rich
theory they embody as for the impressive variety and number of applications they have. Many
variants have been considered: by taking sites of different shape or nature, associating weights to
the sites, changing the underlying metrics, or using individualized distance functions for the sites.
Classic and generalized Voronoi diagrams are described in the surveys [1, 16].

The algorithms designed for computing exact generalized planar Voronoi diagrams often have
numerical robustness problems and are time-consuming due to the numerous high precision cal-
culations that are required. However in some applications (like motion planning or geographic
map simplification) the computation of an approximated Voronoi diagram within a predetermined
precision is sufficient, and several algorithms have been proposed for the approximation of Voronoi
diagrams [5, 12, 18, 19]. We present an algorithm for approximating generalized planar Voronoi
diagrams for different site shapes (points, line-segments, curve-arc segments, ...) and different
distance functions (Euclidean metrics, convex distance functions, ...). The algorithm is robust and
fast (in terms of running time). Moreover it is very general: not all the sites must be homogeneous
in shape or have associated the same distance function, and there are no restrictions on the con-
nectivity of the Voronoi regions —for a single site they may have several components—, the degree
of the Voronoi vertices, or the dimensionality of the bisectors.

2 Sketch of the method

We assume that the planar subdivision P to be approximated is contained in a tight axis-parallel
bounding-box K. The algorithm takes as input a set L of m lines uniformly distributed over K.
For each line I of L we have the ordered set S(I) of intersections between ! and the regions of
P. The algorithm outputs a triangulation T'(P) of K represented by a DCEL structure. Each
triangle of the T'(P) is assigned to one of the regions of P or to an auxiliary region that we call
background. From this triangulation it can easily be obtained, in cost linear with respect to the
number of triangles, the piecewise-linear approximation A(P) of P.

The main part of the algorithm processes the sections of the lines of L sequentially. When a new
section is considered, the triangles that contain the endpoints of the section are subdivided, and
a region determined by a subset of the triangles crossed by the section is retriangulated in order
to connect two vertices by an edge. The DCEL structure is actualized properly. To describe the
general idea followed to design the algorithm, we explain the particular case of the five sections of
Figure 1. First we introduce section a as an edge. Since section b intersects section a, a triangulated
quadrilateral that connects the endpoints of section b with the endpoints of section a is created.
As section ¢ do not intersect the quadrilateral, then it is inserted as an edge. Since section d
intersects section ¢, a second triangulated quadrilateral is also created. Section e intersects the
two quadrilaterals, then the endpoints of the section are connected with the quadrilaterals, and
the edges of the quadrilaterals crossed by the section are also connected. In order to guarantee the
desired cost of the algorithm, we maintain the length of the new edges produced by the subdivision
of the triangles inversely proportional to the number of processed lines.

We can prove, using results of Integral Geometry and Geometric Probability, that by taking
the number of lines m of L large enough the piecewise-linear subdivision A(P) obtained with our
algorithm tends to the planar subdivision P in both the topological and the metrical sense, and
we can show also that the mean computational cost of the algorithm is O(mlogm).
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Figure 1: Triangulation process

3 Voronoi diagram approximation

Our algorithm can be used in order to approximate generalized planar Voronoi diagrams for
different site shapes (points, line-segments, curve-arc segments, ...) and different distance functions
(Euclidean metrics, convex distance functions, ...). The resulting approximation algorithm is very
general: not all the sites must be homogeneous in shape or have associated the same distance
function, and there are no restrictions on the connectivity of the Voronoi regions, which for a
single site may have several components, the degree of the Voronoi vertices or the dimensionality
of the bisectors.

The total cost of approximating the generalized Voronoi diagram of n sites inside a bounding-
box K, using m lines uniformly distributed on K, is O(mn logn + mlogm).

We have implemented both the general algorithm and its particularization to Voronoi diagrams.
An example of the results is shown in the next set of figures which has been obtained using convex
distance functions. Figure 2.a shows the diagram of two sites with non connected Voronoi regions.
Figure 2.b shows the diagram of two sites with a two dimensional bisector. The darkest regions
that appear in the image represent the two dimensional parts of the bisector. Figure 2.c shows
the diagram obtained using different site shapes and different distances: a point and a segment
with the Euclidean metric, a point with a quadrilateral as associated convex shape, and a point
with a non-unit circle as associated convex shape.

) Non connected regions. ) Two dimensional bisector. (c) Different distances.

Figure 2: Conves distance
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