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1 Introduction

Let M be a compact orientable combinatorial
surface of genus g with b boundaries. A pants
decomposition of M is a maximal set of pairwise
disjoint, non-isotopic, essential loops on M; a
loop being essential if it is simple and neither
contractible nor homotopic to a boundary of M.
A pants decomposition is made of 3g—3+bloops
and cuts M into pairs of pants, i.e., spheres with
three boundaries (see [4]).

We describe a conceptually simple, polyno-
mial, iterative scheme which takes a given pants
decomposition and outputs a shorter homotopic
pants decomposition. We prove that, at the end
of the process, each loop is a shortest loop in its
homotopy class (in this paper, we consider ho-
motopy of loops without basepoint, i.e., free ho-
motopy). In particular, the resulting decompo-
sition is optimal in the sense that it is as short as
possible among all homotopic decompositions.

Furthermore, given a simple, essential loop ¥,
it is not difficult to extend ¢ to a pants decom-
position of M (see [3]). This decomposition,
after optimization, contains a shortest loop ho-
motopic to £ which is simple. Even the existence
of such a simple loop is non-obvious.

The problem of optimizing a pants decompo-
sition was raised in the conclusion of [3]; to our
knowledge, we present the first algorithm which
solves it. It also somehow extends [5] to more
general surfaces. This is a natural extension of
our former paper [1] where we treat the case
of optimal simple loops in a given class of ho-
motopy with fixed basepoint as opposed to free
homotopy.
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2 Framework and Result

The framework we use in this paper is very close
to the one used in [1], see this paper for details.
The surface M is assumed to be a polyhedral
2-manifold, whose edges have positive weights.
Let G be the vertex-edge graph of M, and G*
be its dual (embedded into M). We consider
sets of disjoint, simple, piecewise linear (PL)
curves drawn on M that intersect G* in an ad-
missible way (i.e., the intersections are generic).
Throughout this paper, we always assume ad-
missibility. If a curve crosses the edges ey, ..., e}
of G*, then its length is defined to be the sum of
the weights of e1,...,eg. This notion of length
coincides with the usual length if we retract all
curves on G.

Let s be a pants decomposition of M to be
optimized'. To simplify the computation and
the proof of correctness, we first augment s
to form a doubled pants decomposition, which
we call s. Is is obtained by taking a copy of
each loop in s and of each boundary? of M,
slightly translated, in the same homotopy class,
such that s is still a set of pairwise disjoint sim-
ple loops. s = (s1,...,sn) is thus composed of
N = 69—6+3bloops. A loop of s or a boundary
of M and its translated copy are called twins.
For a loop s; in s, the connected component of
M\ {s\ s;} that contains s; is a pair of pants,
and one of its three boundaries is the twin of s;.
We note P; this pair of pants.

Definition 1 An Elementary Step f;(s) con-
sists in replacing the jth loop s; by a shortest
simple homotopic loop in P;. A Main Step f(s)
is the application of f = fnofn—10...0fz0f1 to

n fact, we allow s to be a decomposition of M
with pairs of pants and annuli, as it must be the case if
M is a torus or a cylinder. This technicality does not
change anything for the rest of the paper.

2This to allow shortening of loops that would be ho-
motopic to a boundary.



s. These operations transform a doubled pants
decomposition into another one, keeping the ho-
motopy class of the decomposition.

Here is our main theorem:

Theorem 2 Let s° be a doubled pants decom-
position of M, and let s"*1 = f(s™). For some
m €N, s™ and s™t! have the same length and,
in this situation, s™ is a doubled pants decompo-
sition homotopic to s° made of loops which are
individually as short as possible among all loops
in their (free) homotopy class. In particular,
s™ is an optimal doubled pants decomposition

of M2

Since it is easy to extend a simple loop to a
pants decomposition, and since a pants decom-
position is made of simple loops, we have:

Corollary 3 Let ¢ be a simple loop in M.
There exists a simple loop ¢’ homotopic to (
which is as short as possible among all loops ho-
motopic to /.

The following section aims at proving The-
orem 2. Note that Lemma 7 explains how to
perform algorithmically the computations of f;.

3 Proof of Theorem 2

Let 7 be the projection from the universal cover
M of M onto M. In this section, we fix i €
[1, N]; let s be a doubled pants decomposition,
and let ¢; be a loop which is homotopic to s; and
as short as possible among all loops homotopic
to s;- We may assume that no lift of ¢; self-
intersects in M (see below for the definition of
a lift). This fact, which is not trivial, will be
used in the proof of Proposition 9. Our goal is
to prove that, after a finite number of steps, the
ith loop of the doubled pants decomposition has
the same length as t;.

3.1 Lifts and translations in M

Let ¢ be a loop on M. We view £ as a 1-periodic
mapping from R into M. A lift of £ is a mapping
{:R — M such that mol = £. A part of a lift ¢

3Remark. The proof of Theorem 2 extends to the
case where we consider the real length of PL loops drawn
on M (and not on its vertex-edge graph), provided that
the suitable definition of a crossing is used: we have
to take into account that two loops can partly overlap
without crossing.
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is the restriction of £ to an interval of the form
[a,a +1).

Let /1 be a part of a lift /. Let v be a point
in M, and let 8 be a path from the source of ¢,
to v. Consider the target v' of the lift of 7(53)
starting at the target of ,. Tt is readily seen
that v’ does not depend on the path §, nor on
the part £; of £ chosen. We have 7(v) = 7 (v');
intuitively, v’ is the translated of v by £. We
define 7;(v) to be v'.

Let s; and sj be two twins of s. Let (s;?‘)o‘EN

be an enumeration of the lifts of s; in M. By 2,
Lemma 2.4], s; and s;; bound a cylinder in M.
It follows that, for each a € N, s§' is one bound-
ary of an infinite strip which contains no lift of
s in its interior, and is bounded from the other
side by a lift of s;:. We call s, this other bound-
ary.

Let j € [1, N]. For a lift #; of ¢;, 7, induces a
permutation o; of N as follows: the image by 77,
of s is also a lift of s;, which we call 5 (@) The
0;’s, which depend on #; and on the enumeration
of the lifts of s;, will remain fixed in the rest of
this paper.

3.2 Crossing words

Let A be the set of symbols of the form k% or
k* where k € [1,N] and o € N. The set A*
of words on A is the set of finite sequences of
elements in A. Let p be a path in M; p crosses
the lifts s (for £ € [I,N] and @ € N) at a
finite number of points. We walk along p and,
at each crossing encountered with a lift s of
s, we write the symbol k¢ or k%, according to
the orientation of the crossing (with respect to a
fixed orientation of M). The resulting element
of A* is called the crossing word of p with s, and
denoted by s/p.

Lemma 4 Let a' < a® be two real numbers
such that exactly one crossing occurs between
all lifts of s and t~i|[a1,a2)' For k = 1,2, let
U)k = S/tl’|[ak7ak+1).

If w' = j%w (resp. wy = j*.w), then w? =
w.775 (%) (resp. w? = w.j7 (¥ ),

Let w € A*. We define the relation ~ to be
the equivalence relation generated by j%.w ~
w.57(®) and 7*.w ~ w.7%(® (for any j and a).
Let [A*] be A* quotiented by the relation ~. If
w € A*, we denote by [w] its equivalence class
in [A*].



Let ¢} be a part of #;. It follows from the
previous lemma that [s/#}] does not depend on
t}; hence we define [s/#;] to be their common
equivalence class in [A*].

Let j € [1,N], and let [w] € [A*]. The j-
reductions of [w] are defined as follows. If w has
the form wyj®7®ws or wyj*j“ws,, then we say
that [w] j-reduces to [wyws]; if w has the form
2w, 77 or 7*w;j%(®) | then we also say that
[w] j-reduces to [w1]. Obviously, this definition
does not depend on the particular choice of the
word w in [w].

A reduction is a j-reduction for some j. [w]
is j-irreducible (resp. irreducible) if it can be
applied no j-reduction (resp. reduction).

Lemma and Definition 5 Let [w] € [A*].
There is only one j-irreducible (resp. irre-
ducible) element of [A*] which can be obtained
from [w] by successive j-reductions (resp. reduc-
tions). We define g;([w]) (resp. g([w]) to be this
word.

3.3 Reducibility of [s/1;]

Proposition 6 g([s/t;]) = &, where ¢ is the
class of the empty word in [A*].

Proor. Let s} be a loop homotopic to s;
and slightly translated such that it does not
cross any loop sg. Let §; and #; be the re-
strictions of s} and ¢; to [0,1]. There exists a
path S joining s;(0) to t;(0) such that the path
pi= B.ii.ﬁfl.ézl is a null-homotopic loop in M.
We subdivide p into four paths p1 = 3, p» = ¢;,
ps=pB7" and py = §; " Let p = p1.p2-ps-ps be
a lift of p such that ps is on ;.

It can be proved that s/p is a parenthesized
expression (it reduces to the empty word by suc-
cessive removals of subwords of the form j*7*
and 7%j%). Hence g([s/p]) = €.

p1 and 15371 are parts of lifts of 8, and 77, (1) is
equal to p; '. Hence, if the kth symbol of s/p;
is equal to j* (resp. J%), then the kth symbol
of s/p3 ! (which equals s/ps in reverse order) is
§95(@) (resp. 77i(). Since s/py is empty, it fol-
lows that g([s/p=]) = g([s/p]). The left handside
equals g([s/t;]) and the right handside equals .
[l

3.4 Uncrossing the loops

Lemma 7 Let r = f;j(s). r; is, in Pj, a short-
est loop homotopic to s;.

PrROOF (SKETCH). Let by, k = 1,2,3, be the
boundaries of P;, such that b; is homotopic to
sj. Let p1 (resp. p2) be a shortest path between
by and b3 (resp. by and bs); we can make these
paths simple and disjoint. Let £ be a shortest
loop homotopic to s; in P;, and ? be a lift of ¢
in the universal cover of P;j. By analyzing the
way { crosses the lifts of p; and p», we can prove
that we can change ¢ to a loop ¢, which is also
a shortest loop homotopic to s; in P;, but does
not cross p; and crosses py once.

Cut P; along p; and py; for each pair of ver-
tices corresponding to a single vertex of py be-
fore cutting, compute a shortest path whose
endpoints are this pair of vertices; take the
shortest of these shortest paths. By the preced-
ing paragraph, this path yields a shortest loop
homotopic to s; in Pj, and it is simple. As
a byproduct, this describes a way to compute

fi(s). O

Let r = fj(s). If k& # j, let ry be equal
to sf. To get an enumeration of the lifts of
rj, we proceed as follows. Let s;; be the twin
of s;. Note that r; and s; bound a cylinder
by [2, Lemma 2.4]. We let r$ to be the lift of
r; which bounds the lift of this cylinder whose
other boundary is s%. It follows that 77, (rf) is
a;(e@)

equal to r; (in other words, the permutation

o; remains unchanged).

Lemma 8 gj([T/fi]) = g;([s/t:]).

PROOF (SKETCH). Let [r/t;]; and [s/?;]; be
obtained by deleting j-symbols from [r/f;] and
[s/t;]. Since r and s only differ in their jth loop,
these two words are identical. Consider two con-
secutive symbols o1 and o3 in [u/t;];, where u
stands for either r or s. These two symbols
are replaced in [u/t;] by an expression ow;o2,
where w; is a word on j-symbols. We only need
to show that w; reduces (with parenthesized re-
ductions) to a same expression for v = r and
u = s. This obviously implies the lemma. The
proof uses the fact that uj (= s;) and u; bound
a cylinder in P;, and this cylinder is crossed by
no other loops of u. O

Proposition 9 We can replace t; by a loop t}
(homotopic to t;, no longer than t;, and such
that its lifts are simple) so that [r/t}] = g;([s/%:])
for some lift t'. of t..

Proor. By Lemma 8, we may only consider
the case where [r/t}] is j-reducible; this implies
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that there is a disk D in M bounded by an arc
7% of a lift 7; of r;, and an arc 5 of #; with the
same endpoints a and b.

D intersects ; in a set of pairwise disjoint
arcs with endpoints on 74 (recall £; is simple).
Consider an innermost such arc #¢?, i.e., such
that it sustains a subarc ch-d of qub that does not
intersect ;.

If #¢¢ were shorter than F;-d,
r; as follows: in M, replace the part F;d of 7;
by a path with the same endpoints going along
¢4 and project it onto M. The resulting loop,
r;-, is shorter than r;; moreover, no lift of any
loop other than t; can cross D, so the projection
m(D) lies entirely in P;. It follows that r} is
homotopic in P; to r;, while being shorter; this
contradicts Lemma 7.

We modify #; as follows: replace the part £¢¢
of #; by a path with the same endpoints going
along Fj-d, on the other side of F;d (to remove the
two crossings). The projection ¢} of the resulting
path is a loop homotopic to t;, and no lift of
this new loop self-intersects in M. It cannot
be longer than ¢; by the preceding paragraph,
hence ¢} is a shortest loop homotopic to s; whose
lifts are simple. Moreover, [r/#] is deduced from
[r/t:] by a j-reduction. We finish the proof by
induction. [

we could shorten

3.5 Conclusion of the proof

Lemma 10 Assume t; does not cross any loop
of s; let P be the pair of pants delimited by s in
which t; is. Then one of the boundaries of P is
homotopic, in P, to t;.

PROOF. Omitted in this abstract. O

Lemma 11 Assume that [s/t;] = . Let r =
f2(s). Thenr; and its twin have the same length
as t;.

Proor. By Lemma 10, ¢; is inside a pair
of pants bounded by some s, which is either s;
or its twin. By Proposition 9, we may replace
t; by t; such that s’ := fr_1 o...0 fi(s) does
not cross t}, and (in fact) that ¢} is in a pair
of pants bounded by sj,. Hence, by Lemma 7,
the kth loop of fi(s) has the same length as ¢;.
After one more iteration of f the same is true
for the twin of the kth loop. O

PROOF OF THEOREM 2. Fix 4; let ¥ be a

shortest loop homotopic to s?. By Proposi-

tions 9 and 6, one can construct a sequence
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(t?)nen of shortest homotopic loops such that
the length of [s™/t}] strictly decreases. Then
for some n, [s"/t?] = e. By Lemma 11, s}'t?
has the same length as t?. Hence the length of
s™ becomes stationary. It remains to prove that
the lengths remain unchanged once s™ and s"*!
have the same lengths. O

4 Complexity

We present a sketch of the complexity analysis
(which is similar to and simpler than the one
in [1]). Let n be the number of edges of M, g its
genus and b its number of boundaries. Let a be
the longest-to-shortest edge ratio of M. Let S
be a combinatorial doubled pants decomposition
of M composed of N = O(g+b) loops, and p be
the maximal multiplicity of any vertex of M in
a loop of S. Hence the number of edges of a loop
at the beginning of the algorithm is O(un), and,
since loops can only get shorter in length, their
maximal number of edges is O(aun). We can
prove that the lengths of the crossing words is
O((g +b)ap®n), and compute the time spent by
an Elementary Step, using Dijkstra’s algorithm
and the proof of Lemma 7. Finally:

Theorem 12 This algorithm computes an op-
timal pants decomposition homotopic to S in
O(p*a(g + b)?n3log pan) time.
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