Optimal Pants Decompositions and Shortest Freely Homotopic Loops on an Orientable Surface

Éric Colin de Verdière*

Francis Lazarus[†]

1 Introduction

Let \mathcal{M} be a compact orientable combinatorial surface of genus g with b boundaries. A pants decomposition of \mathcal{M} is a maximal set of pairwise disjoint, non-isotopic, essential loops on \mathcal{M} ; a loop being essential if it is simple and neither contractible nor homotopic to a boundary of \mathcal{M} . A pants decomposition is made of 3g-3+b loops and cuts \mathcal{M} into pairs of pants, i.e., spheres with three boundaries (see [4]).

We describe a conceptually simple, polynomial, iterative scheme which takes a given pants decomposition and outputs a shorter homotopic pants decomposition. We prove that, at the end of the process, each loop is a shortest loop in its homotopy class (in this paper, we consider homotopy of loops without basepoint, *i.e.*, free homotopy). In particular, the resulting decomposition is *optimal* in the sense that it is as short as possible among all homotopic decompositions.

Furthermore, given a simple, essential loop ℓ , it is not difficult to extend ℓ to a pants decomposition of \mathcal{M} (see [3]). This decomposition, after optimization, contains a shortest loop homotopic to ℓ which is simple. Even the existence of such a simple loop is non-obvious.

The problem of optimizing a pants decomposition was raised in the conclusion of [3]; to our knowledge, we present the first algorithm which solves it. It also somehow extends [5] to more general surfaces. This is a natural extension of our former paper [1] where we treat the case of optimal simple loops in a given class of homotopy with fixed basepoint as opposed to free homotopy.

2 Framework and Result

The framework we use in this paper is very close to the one used in [1], see this paper for details. The surface \mathcal{M} is assumed to be a polyhedral 2-manifold, whose edges have positive weights. Let G be the vertex-edge graph of \mathcal{M} , and G^* be its dual (embedded into \mathcal{M}). We consider sets of disjoint, simple, piecewise linear (PL) curves drawn on \mathcal{M} that intersect G^* in an admissible way (i.e., the intersections are generic). Throughout this paper, we always assume admissibility. If a curve crosses the edges e_1^*, \ldots, e_k^* of G^* , then its length is defined to be the sum of the weights of e_1, \ldots, e_k . This notion of length coincides with the usual length if we retract all curves on G.

Let s^{init} be a pants decomposition of \mathcal{M} to be optimized¹. To simplify the computation and the proof of correctness, we first augment s^{init} to form a doubled pants decomposition, which we call s. Is is obtained by taking a copy of each loop in s^{init} and of each boundary² of \mathcal{M} , slightly translated, in the same homotopy class, such that s is still a set of pairwise disjoint simple loops. $s = (s_1, \ldots, s_N)$ is thus composed of N = 6g - 6 + 3b loops. A loop of s or a boundary of \mathcal{M} and its translated copy are called twins. For a loop s_j in s, the connected component of $\mathcal{M} \setminus \{s \setminus s_j\}$ that contains s_j is a pair of pants, and one of its three boundaries is the twin of s_j . We note \mathcal{P}_j this pair of pants.

Definition 1 An Elementary Step $f_j(s)$ consists in replacing the jth loop s_j by a shortest simple homotopic loop in \mathcal{P}_j . A Main Step f(s) is the application of $f = f_N \circ f_{N-1} \circ \ldots \circ f_2 \circ f_1$ to

^{*}Laboratoire d'informatique de l'École normale supérieure, UMR 8548 (CNRS), Paris, France. Eric.Colin.de.Verdiere@ens.fr

[†]Laboratoire IRCOM-SIC, UMR 6615 (CNRS), Poitiers, France. Francis.Lazarus@sic.univpoitiers.fr

 $^{^1}$ In fact, we allow s^{init} to be a decomposition of $\mathcal M$ with pairs of pants and annuli, as it must be the case if $\mathcal M$ is a torus or a cylinder. This technicality does not change anything for the rest of the paper.

²This to allow shortening of loops that would be homotopic to a boundary.

s. These operations transform a doubled pants decomposition into another one, keeping the homotopy class of the decomposition.

Here is our main theorem:

Theorem 2 Let s^0 be a doubled pants decomposition of \mathcal{M} , and let $s^{n+1} = f(s^n)$. For some $m \in \mathbb{N}$, s^m and s^{m+1} have the same length and, in this situation, s^m is a doubled pants decomposition homotopic to s^0 made of loops which are individually as short as possible among all loops in their (free) homotopy class. In particular, s^m is an optimal doubled pants decomposition of \mathcal{M} .

Since it is easy to extend a simple loop to a pants decomposition, and since a pants decomposition is made of simple loops, we have:

Corollary 3 Let ℓ be a simple loop in \mathcal{M} . There exists a simple loop ℓ' homotopic to ℓ which is as short as possible among all loops homotopic to ℓ .

The following section aims at proving Theorem 2. Note that Lemma 7 explains how to perform algorithmically the computations of f_i .

3 Proof of Theorem 2

Let π be the projection from the universal cover $\tilde{\mathcal{M}}$ of \mathcal{M} onto \mathcal{M} . In this section, we fix $i \in [1, N]$; let s be a doubled pants decomposition, and let t_i be a loop which is homotopic to s_i and as short as possible among all loops homotopic to s_i . We may assume that no lift of t_i self-intersects in $\tilde{\mathcal{M}}$ (see below for the definition of a lift). This fact, which is not trivial, will be used in the proof of Proposition 9. Our goal is to prove that, after a finite number of steps, the ith loop of the doubled pants decomposition has the same length as t_i .

3.1 Lifts and translations in $\tilde{\mathcal{M}}$

Let ℓ be a loop on \mathcal{M} . We view ℓ as a 1-periodic mapping from \mathbb{R} into \mathcal{M} . A *lift* of ℓ is a mapping $\tilde{\ell} : \mathbb{R} \to \tilde{\mathcal{M}}$ such that $\pi \circ \tilde{\ell} = \ell$. A part of a lift $\tilde{\ell}$

is the restriction of $\tilde{\ell}$ to an interval of the form [a, a+1).

Let $\tilde{\ell}_1$ be a part of a lift $\tilde{\ell}$. Let v be a point in $\tilde{\mathcal{M}}$, and let β be a path from the source of $\tilde{\ell}_1$ to v. Consider the target v' of the lift of $\pi(\beta)$ starting at the target of $\tilde{\ell}_1$. It is readily seen that v' does not depend on the path β , nor on the part $\tilde{\ell}_1$ of $\tilde{\ell}$ chosen. We have $\pi(v) = \pi(v')$; intuitively, v' is the translated of v by $\tilde{\ell}$. We define $\tau_{\tilde{\ell}}(v)$ to be v'.

Let s_j and $s_{j'}$ be two twins of s. Let $(s_j^{\alpha})^{\alpha \in \mathbb{N}}$ be an enumeration of the lifts of s_j in $\widetilde{\mathcal{M}}$. By [2, Lemma 2.4], s_j and $s_{j'}$ bound a cylinder in \mathcal{M} . It follows that, for each $\alpha \in \mathbb{N}$, s_j^{α} is one boundary of an infinite strip which contains no lift of s in its interior, and is bounded from the other side by a lift of $s_{j'}$. We call $s_{j'}^{\alpha}$ this other boundary.

Let $j \in [1, N]$. For a lift \tilde{t}_i of t_i , $\tau_{\bar{t}_i}$ induces a permutation σ_j of \mathbb{N} as follows: the image by $\tau_{\bar{t}_i}$ of s_j^{α} is also a lift of s_j , which we call $s_j^{\sigma_j(\alpha)}$. The σ_j 's, which depend on \tilde{t}_i and on the enumeration of the lifts of s_j , will remain fixed in the rest of this paper.

3.2 Crossing words

Let A be the set of symbols of the form k^{α} or \bar{k}^{α} , where $k \in [1,N]$ and $\alpha \in \mathbb{N}$. The set A^* of words on A is the set of finite sequences of elements in A. Let \tilde{p} be a path in $\tilde{\mathcal{M}}$; \tilde{p} crosses the lifts s_k^{α} (for $k \in [1,N]$ and $\alpha \in \mathbb{N}$) at a finite number of points. We walk along \tilde{p} and, at each crossing encountered with a lift s_k^{α} of s, we write the symbol k^{α} or \bar{k}^{α} , according to the orientation of the crossing (with respect to a fixed orientation of $\tilde{\mathcal{M}}$). The resulting element of A^* is called the $crossing\ word$ of \tilde{p} with s, and denoted by s/\tilde{p} .

Lemma 4 Let $a^1 < a^2$ be two real numbers such that exactly one crossing occurs between all lifts of s and $\tilde{t}_i|_{[a^1,a^2)}$. For k=1,2, let $w^k = s/\tilde{t}_i|_{[a^k,a^k+1)}$.

If $w^1 = j^{\alpha}.w$ (resp. $w_1 = \bar{\jmath}^{\alpha}.w$), then $w^2 = w.\bar{\jmath}^{\sigma_j(\alpha)}$ (resp. $w^2 = w.\bar{\jmath}^{\sigma_j(\alpha)}$).

Let $w \in A^*$. We define the relation \sim to be the equivalence relation generated by $j^{\alpha}.w \sim w.j^{\sigma_j(\alpha)}$ and $\bar{\jmath}^{\alpha}.w \sim w.\bar{\jmath}^{\sigma_j(\alpha)}$ (for any j and α). Let $[A^*]$ be A^* quotiented by the relation \sim . If $w \in A^*$, we denote by [w] its equivalence class in $[A^*]$.

 $^{{}^3\}mathbf{Remark}$. The proof of Theorem 2 extends to the case where we consider the real length of PL loops drawn on \mathcal{M} (and not on its vertex-edge graph), provided that the suitable definition of a crossing is used: we have to take into account that two loops can partly overlap without crossing.

Let \tilde{t}_i^1 be a part of \tilde{t}_i . It follows from the previous lemma that $[s/\tilde{t}_i^1]$ does not depend on \tilde{t}_i^1 ; hence we define $[s/\tilde{t}_i]$ to be their common equivalence class in $[A^*]$.

Let $j \in [1, N]$, and let $[w] \in [A^*]$. The j-reductions of [w] are defined as follows. If w has the form $w_1 j^{\alpha} \bar{j}^{\alpha} w_2$ or $w_1 \bar{j}^{\alpha} j^{\alpha} w_2$, then we say that [w] j-reduces to $[w_1 w_2]$; if w has the form $j^{\alpha} w_1 \bar{j}^{\sigma_j(\alpha)}$ or $\bar{j}^{\alpha} w_1 j^{\sigma_j(\alpha)}$, then we also say that [w] j-reduces to $[w_1]$. Obviously, this definition does not depend on the particular choice of the word w in [w].

A reduction is a j-reduction for some j. [w] is j-irreducible (resp. irreducible) if it can be applied no j-reduction (resp. reduction).

Lemma and Definition 5 Let $[w] \in [A^*]$. There is only one j-irreducible (resp. irreducible) element of $[A^*]$ which can be obtained from [w] by successive j-reductions (resp. reductions). We define $g_j([w])$ (resp. g([w]) to be this word.

3.3 Reducibility of $[s/\tilde{t}_i]$

Proposition 6 $g([s/\tilde{t}_i]) = \varepsilon$, where ε is the class of the empty word in $[A^*]$.

PROOF. Let s_i' be a loop homotopic to s_i and slightly translated such that it does not cross any loop s_k . Let \dot{s}_i and \dot{t}_i be the restrictions of s_i' and t_i to [0,1]. There exists a path β joining $s_i'(0)$ to $t_i(0)$ such that the path $p:=\beta.\dot{t}_i.\beta^{-1}.\dot{s}_i^{-1}$ is a null-homotopic loop in \mathcal{M} . We subdivide p into four paths $p_1=\beta, p_2=\dot{t}_i, p_3=\beta^{-1}$, and $p_4=\dot{s}_i^{-1}$. Let $\tilde{p}=\tilde{p}_1.\tilde{p}_2.\tilde{p}_3.\tilde{p}_4$ be a lift of p such that \tilde{p}_2 is on \tilde{t}_i .

It can be proved that s/\tilde{p} is a parenthesized expression (it reduces to the empty word by successive removals of subwords of the form $j^{\alpha}\bar{j}^{\alpha}$ and $\bar{j}^{\alpha}j^{\alpha}$). Hence $g([s/\tilde{p}])=\varepsilon$.

 \tilde{p}_1 and \tilde{p}_3^{-1} are parts of lifts of β , and $\tau_{\tilde{t}_i}(\tilde{p}_1)$ is equal to \tilde{p}_3^{-1} . Hence, if the kth symbol of s/\tilde{p}_1 is equal to j^{α} (resp. $\bar{\jmath}^{\alpha}$), then the kth symbol of s/\tilde{p}_3^{-1} (which equals s/\tilde{p}_3 in reverse order) is $j^{\sigma_j(\alpha)}$ (resp. $\bar{\jmath}^{\sigma_j(\alpha)}$). Since s/\tilde{p}_4 is empty, it follows that $g([s/\tilde{p}_2]) = g([s/\tilde{p}])$. The left handside equals $g([s/\tilde{t}_i])$ and the right handside equals ε . \square

3.4 Uncrossing the loops

Lemma 7 Let $r = f_j(s)$. r_j is, in \mathcal{P}_j , a shortest loop homotopic to s_j .

PROOF (SKETCH). Let b_k , k=1,2,3, be the boundaries of \mathcal{P}_j , such that b_1 is homotopic to s_j . Let p_1 (resp. p_2) be a shortest path between b_2 and b_3 (resp. b_1 and b_3); we can make these paths simple and disjoint. Let ℓ be a shortest loop homotopic to s_j in \mathcal{P}_j , and $\tilde{\ell}$ be a lift of ℓ in the universal cover of \mathcal{P}_j . By analyzing the way $\tilde{\ell}$ crosses the lifts of p_1 and p_2 , we can prove that we can change ℓ to a loop ℓ' , which is also a shortest loop homotopic to s_j in \mathcal{P}_j , but does not cross p_1 and crosses p_2 once.

Cut \mathcal{P}_j along p_1 and p_2 ; for each pair of vertices corresponding to a single vertex of p_2 before cutting, compute a shortest path whose endpoints are this pair of vertices; take the shortest of these shortest paths. By the preceding paragraph, this path yields a shortest loop homotopic to s_j in \mathcal{P}_j , and it is simple. As a byproduct, this describes a way to compute $f_j(s)$. \square

Let $r=f_j(s)$. If $k\neq j$, let r_k^α be equal to s_k^α . To get an enumeration of the lifts of r_j , we proceed as follows. Let $s_{j'}$ be the twin of s_j . Note that r_j and $s_{j'}$ bound a cylinder by [2, Lemma 2.4]. We let r_j^α to be the lift of r_j which bounds the lift of this cylinder whose other boundary is $s_{j'}^\alpha$. It follows that $\tau_{\bar{t}_i}(r_j^\alpha)$ is equal to $r_j^{\sigma_j(\alpha)}$ (in other words, the permutation σ_j remains unchanged).

Lemma 8 $g_j([r/\tilde{t}_i]) = g_j([s/\tilde{t}_i]).$

PROOF (SKETCH). Let $[r/\tilde{t}_i]_j$ and $[s/\tilde{t}_i]_j$ be obtained by deleting j-symbols from $[r/\tilde{t}_i]$ and $[s/\tilde{t}_i]$. Since r and s only differ in their jth loop, these two words are identical. Consider two consecutive symbols σ_1 and σ_2 in $[u/\tilde{t}_i]_j$, where u stands for either r or s. These two symbols are replaced in $[u/\tilde{t}_i]$ by an expression $\sigma_1 w_j \sigma_2$, where w_j is a word on j-symbols. We only need to show that w_j reduces (with parenthesized reductions) to a same expression for u=r and u=s. This obviously implies the lemma. The proof uses the fact that $u_{j'}$ $(=s_{j'})$ and u_j bound a cylinder in \mathcal{P}_j , and this cylinder is crossed by no other loops of u. \square

Proposition 9 We can replace t_i by a loop t'_i (homotopic to t_i , no longer than t_i , and such that its lifts are simple) so that $[r/\tilde{t}'_i] = g_j([s/\tilde{t}_i])$ for some lift \tilde{t}'_i of t'_i .

PROOF. By Lemma 8, we may only consider the case where $[r/\tilde{t}'_i]$ is j-reducible; this implies that there is a disk D in $\tilde{\mathcal{M}}$ bounded by an arc \tilde{r}_j^{ab} of a lift \tilde{r}_j of r_j , and an arc \tilde{t}_i^{ab} of \tilde{t}_i with the same endpoints a and b.

D intersects \tilde{t}_i in a set of pairwise disjoint arcs with endpoints on \tilde{r}_j^{ab} (recall \tilde{t}_i is simple). Consider an innermost such arc \tilde{t}_i^{cd} , *i.e.*, such that it sustains a subarc \tilde{r}_j^{cd} of \tilde{r}_j^{ab} that does not intersect \tilde{t}_i .

If \tilde{t}_i^{cd} were shorter than \tilde{r}_j^{cd} , we could shorten r_j as follows: in $\tilde{\mathcal{M}}$, replace the part \tilde{r}_j^{cd} of \tilde{r}_j by a path with the same endpoints going along \tilde{t}_i^{cd} , and project it onto \mathcal{M} . The resulting loop, r_j' , is shorter than r_j ; moreover, no lift of any loop other than t_i can cross D, so the projection $\pi(D)$ lies entirely in \mathcal{P}_j . It follows that r_j' is homotopic $in \mathcal{P}_j$ to r_j , while being shorter; this contradicts Lemma 7.

We modify \tilde{t}_i as follows: replace the part \tilde{t}_i^{cd} of \tilde{t}_i by a path with the same endpoints going along \tilde{r}_j^{cd} , on the other side of \tilde{r}_j^{cd} (to remove the two crossings). The projection t_i' of the resulting path is a loop homotopic to t_i , and no lift of this new loop self-intersects in $\tilde{\mathcal{M}}$. It cannot be longer than t_i by the preceding paragraph, hence t_i' is a shortest loop homotopic to s_i whose lifts are simple. Moreover, $[r/\tilde{t}_i']$ is deduced from $[r/\tilde{t}_i]$ by a j-reduction. We finish the proof by induction. \square

3.5 Conclusion of the proof

Lemma 10 Assume t_i does not cross any loop of s; let \mathcal{P} be the pair of pants delimited by s in which t_i is. Then one of the boundaries of \mathcal{P} is homotopic, in \mathcal{P} , to t_i .

PROOF. Omitted in this abstract.

Lemma 11 Assume that $[s/\tilde{t}_i] = \varepsilon$. Let $r = f^2(s)$. Then r_i and its twin have the same length as t_i .

PROOF. By Lemma 10, t_i is inside a pair of pants bounded by some s_k which is either s_i or its twin. By Proposition 9, we may replace t_i by t'_i such that $s' := f_{k-1} \circ \ldots \circ f_1(s)$ does not cross t'_i , and (in fact) that t'_i is in a pair of pants bounded by s'_k . Hence, by Lemma 7, the kth loop of $f_k(s')$ has the same length as t_i . After one more iteration of f the same is true for the twin of the kth loop. \square

PROOF OF THEOREM 2. Fix i; let t_i^0 be a shortest loop homotopic to s_i^0 . By Propositions 9 and 6, one can construct a sequence

 $(t_i^n)_{n\in\mathbb{N}}$ of shortest homotopic loops such that the length of $[s^n/t_i^n]$ strictly decreases. Then for some n, $[s^n/t_i^n] = \varepsilon$. By Lemma 11, s_i^{n+2} has the same length as t_i^0 . Hence the length of s^n becomes stationary. It remains to prove that the lengths remain unchanged once s^n and s^{n+1} have the same lengths. \square

4 Complexity

We present a sketch of the complexity analysis (which is similar to and simpler than the one in [1]). Let n be the number of edges of \mathcal{M} , g its genus and b its number of boundaries. Let α be the longest-to-shortest edge ratio of \mathcal{M} . Let Sbe a combinatorial doubled pants decomposition of \mathcal{M} composed of N = O(q+b) loops, and μ be the maximal multiplicity of any vertex of \mathcal{M} in a loop of S. Hence the number of edges of a loop at the beginning of the algorithm is $O(\mu n)$, and, since loops can only get shorter in length, their maximal number of edges is $O(\alpha \mu n)$. We can prove that the lengths of the crossing words is $O((g+b)\alpha\mu^2 n)$, and compute the time spent by an Elementary Step, using Dijkstra's algorithm and the proof of Lemma 7. Finally:

Theorem 12 This algorithm computes an optimal pants decomposition homotopic to S in $O(\mu^4 \alpha^3 (g+b)^2 n^3 \log \mu \alpha n)$ time.

References

- É. Colin de Verdière and F. Lazarus. Optimal system of loops on an orientable surface. In *IEEE Symp.* Found. Comput. Sci., pages 627-636, 2002.
- [2] D. Epstein. Curves on 2-manifolds and isotopies. *Acta Mathematica*, 115:83–107, 1966.
- [3] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. In Proc. 18th Annu. ACM Symp. Comput. Geom., pages 244-253, 2002.
- [4] A. Hatcher. Pants decompositions of surfaces. http://www.math.cornell.edu/~hatcher/Papers/pantsdecomp.pdf, 2000.
- [5] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comput. Geom. Theory Appl., 4:63-98, 1994.