Convex sets in graphs

J. Céceres *! A. Méarquez *? O.R. Oellermann 3 M.L. Puertas *!

The study of abstract convexity began in the early fifties with the search for an axiom system
that defines a convex set and in some way generalises the classical concept of a Euclidean convex
set. Numerous contributions to this topic have been made. An extensive survey of this subject
can be found in [15].

Among the wide variety of structures that have been studied under abstract convexity are
metric spaces, ordered sets or lattices and graphs, the last being the focus of this paper. Several
abstract convexities associated with the vertex set of a graph are well-known (see [8]). Their study
is of interest in Computational Geometry and has some direct applications to other areas such as,
for example, Game Theory (see [4]).

For graph terminology we follow [11]; except that we use vertex instead of point and edge
instead of line. All graphs considered here are finite, simple, unweighted and undirected. The
interval between a pair u, v of vertices in a graph G is the collection of all vertices that lie on some
shortest u —v path in G and is denoted by Ig[u,v] or I[u,v] if G is understood. Intervals in graphs
have been studied extensively (see [2, 13, 14]) and play an important role in the study of several
classes of graphs such as the Ptolemaic graphs or block graphs. A subset S of vertices of a graph
is said to be conwvez if it contains the interval between every pair of vertices in .S. This definition
allows us to study several problems from Euclidean convexity in a finite and discrete setting.

If S is a convex set in a graph, a vertex p € S is said to be an extreme point for S if S — {p} is
still convex. A vertex in a graph is simplicial if its neighbourhood induces a complete subgraph.
So p is an extreme vertex for a convex set S if and only if p is simplicial in the subgraph induced
by S.

The convexr hull of a set S of vertices in a graph G is the smallest convex subset of G that
contains S and is denoted by CH(S). It is true, in general, that the convex hull of the extreme
points of a vertex set S is contained in S, but equality holds only in special cases. If a graph
satisfies this property for every convex subset of the vertex set, it is said to have the Minkowski-
Krein-Milman property. In [8] it is shown that a graph has this property if and only if it has no
induced cycles of length bigger than 3 and has no induced 3-fan (see Figure 1).

Figure 1: A 3-fan

If a graph G has the Minkowski-Krein-Milman property and S is a convex set of V(G), then we
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can rebuild the set .S from its extreme vertices using the convex hull operation. Since this cannot
be done with every graph, using only the extreme vertices of a given convex set S, it is natural
to ask if it is possible to extend the set of extreme vertices of S to a set that allows us to rebuild
S using the vertices in this extended set and the convex hull operation. We answer this question
in the affirmative using the collection of ‘contour vertices’ of a set. To this end, let S be a set of
vertices in a graph G and recall that the eccentricity in S of a vertex u € S is given by eccs(u) =
max{d(u,v) : v € S} and a vertex v € S for which d(u,v) = eccs(u) is called an eccentric vertez
for win S. In case S = V(G), we denote eccs(u) by ecc(u). A vertex u € S is said to be a contour
vertex of S if eccs(u) > eces(v) for every neighbour v of w in S. The set of all contour vertices of
S is called the contour of S and is denoted by Ct(S). If S = V(G), the set is called the contour
of G and is denoted by Ct(G).
The relationship between contour and extreme points is shown in the two following results.

Lemma 1. Let G be a graph and S CV(G). Then Ct(S) contains all extreme vertices of S.

Proposition 2. Let G be a distance-hereditary graph without induced 4-cycles. A vertex x € V(G)
is a contour vertex for G if and only if each neighbour v of © which is on a shortest path between
x and some eccentric vertex for x satisfies N(x) C N(v).

The following result shows that the convex hull of the contour set of a convex set of vertices
in a graph is the entire set, without any restriction on the graph. So this result is similar to the
Minkowski-Krein-Milman property and holds for all graphs.

Theorem 3. Let G be a graph and S a convex subset of vertices. Then S = CH(Ct(S5)).

Now we characterize those graphs that are the contour of some other graph. The following
results tells us which graphs are not the contour of any graph.

Proposition 4. If H is a connected, non-complete graph with radius 1, then H is not the contour
of any graph.

On the other hand, suppose that H is a connected graph with radius greater than 1. We now
describe a graph G such that its contour is H, using the construction given in [3]. Let G be the
join of H and K;. Then every vertex of H has eccentricity 2 and the vertex of G — V(H) has
eccentricity 1. Hence the vertices of H are precisely the contour vertices of G.

A slightly different construction allows us to obtain a graph with given disconnected contour
set such that the eccentricities of the vertices in every component are given numbers at least 2.

More precisely, let H be a disconnected graph with components, Hy, Ho, ..., Hi. Let n1,ns,...ng
be k natural numbers such that ny = n; = max{ni,ns,...nx} and M = max{ni,na,...nx} <
2min{ny,na2,...,nr} = 2m. Note that these are natural restrictions, because M will be the

diameter of the graph G and m will be greater than or equal to the radius. Then there exists
a connected graph G such that H is the contour of G and the eccentricity of every vertex in
each component H; of H is equal to n;. To construct such a graph G we begin with the path
V1V ... vp41 Of order M + 1. Now replace v; by H; and vy41 by Hy so that all vertices in H;
are neighbours of vo and all vertices in Hy, are neighbours of vyy.

Now, for each ¢, 2 < i < k — 1 there exists a vertex v,, on the path such that its eccentricity
is n; — 1. We now add H; to the graph and join all the vertices of H; to vy, (see Figure 2). Then
ecc(u;) = n; for all w; € H;, and Ct(G) = H.

In order to find the convex hull of a set S one begins by taking the union of the intervals
between pairs of vertices of S, taken over all pairs of vertices in S. We denote this set by I¢[S]
or I[S], i.e., I[S] = Ugyvycsl[u,v] and call it the geodetic closure of S. One then repeats this
procedure with the new set and continues until, for the first time, one reaches a set 7' for which
the geodetic closure is the set itself , i.e., T = I[T]. This is then the convex hull of S. If this
procedure only has to be performed once, we say that the set S is a geodetic set for its convex
hull. In general a subset S of a convex set T is a geodetic set for T if I[S] = T. The notion of a
geodetic set for the vertex set of a graph was first defined in [5].
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Figure 2: A disconnected contour set

We now focus on geodetic sets in ‘distance hereditary graphs’. We first discuss here how these
graphs are related to the graphs with the Minkowski-Krein-Milman property. Howorka [12] defined
a connected graph G to be distance hereditary if for every connected induced subgraph H of G
and every two vertices u,v in H, dg(u,v) = dg(u,v). In the same paper several characterisations
for this class of graphs are given. We state here only one of these which we will use in this paper.

Theorem 5 ([12]). A connected graph G is distance hereditary if and only if every cycle in G of
length at least 5 has a pair of crossing chords.

Further useful characterizations for this class of graphs were established in [1, 7, 10]. Apart
from having elegant characterisations, distance hereditary graphs possess other useful properties.
It is a class of graphs for which several NP-hard problems have polynomial solutions. For example,
it has been shown in [6, 7] that the Steiner problem for graphs, which is known to be NP-hard
(see [9]), can be solved in polynomial time in distance hereditary graphs. Moreover, these graphs
are Steiner distance hereditary as was shown in [7]; i.e., the Steiner distance of a set of vertices is
the same, in any connected induced subgraph that contains it, as it is in the graph itself.

The class of distance hereditary graphs also properly contains the graphs that possess the
Minkowski-Krein-Milman properly since a graph is chordal without an induced 3-fan if and only if
it is a distance hereditary graph without an induced 4-cycle. It was shown in [8] that in a chordal
graph every non-simplicial vertex lies on a chordless path between two simplicial vertices. If G is
a chordless graph without an induced 3-fan, then G is distance hereditary and thus every induced
path is necessarily a shortest path. Hence the simplicial vertices for a convex set S in a graph with
the Minkowski-Krein-Milman property is a geodetic set for S. We show that the contour vertices
of a distance hereditary graph form a geodetic set for the graph.

We need the following Lemma, that relates eccentric and contour points in distance hereditary
graphs.

Lemma 6. (a) If G is a distance hereditary graph and x € V(G), then there is an eccentric vertex
for x that is a contour vertex.

(b) Let G be a distance hereditary graph without induced 4-cycles. If x € V(G) is such that
ecc(x) > 2, then each eccentric vertex of x is a contour vertex of G.

Theorem 7. Let G be a distance hereditary graph. Then Ct(G) is a geodetic set for G.

The graph of Figure 3 shows that Theorem 7 does not hold for graphs in general. Note that
the contour set of this graph G is Ct(G) = {v2,v5, w} and vy ¢ I[Ct(G)].

Indeed if we replace v, by a clique of arbitrarily large order and join every vertex in this clique
with vo and vg, we see that the ratio |I[Ct(G)]|/|V (G)| can be made arbitrarily small.

As we mentioned in the introduction, the process of taking geodetic closures starting from a
set S of vertices can be repeated to obtain a sequence Sy, S1,... of sets where Sy = S, S; = I[9],
Sy = I[I[S]].... Since V(@) is finite, the process terminates with some smallest r for which
Sy = Sp41. The set S, is then the convex hull of S and r is called the geodetic iteration number,
gin(S), of S. In the graph G of Figure 3, ¢in(Ct(G)) = 2. It remains an open problem to
determine if gin(Ct(G)) can be larger than 2 and indeed if gin(Ct(G)) can be arbitrarily large.
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Figure 3: A graph whose contour set is not geodetic
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