\ooo /
& R,
@

//6/

19th European Workshop on Computational Geometry

Program & Abstracts March 24- 26,2003

Institute of Computer Science |
University of Bonn
Germany

Table of Contents

Preliminary Program 1
Invited Lectures............ 5
Geometric approximation using core sets.............. ...l 7

Pankaj Kumar Agarwal, Duke University

Similarity between image and terrain: Geometric approaches to com-

PULer VISION 9
Tetsuo Asano, JAIST
Approximation algorithms for geometric shortest path problems...... 11

Jorg-Riidiger Sack, Carleton University

Contributions 13

The one-round Voronoi game replayed 15
Fekete, S.P., Meijer, H.

The Voronoi diagram for n disjoint spherical sites of O(1) different radii
has complexity O(n?) i 19
O Dinlaing, C.

The anchored Voronoi diagram: Static and dynamic versions and appli-
CAB OIS .« ..o 23
Barcia, J.A., Diaz-Béanez, J.M., Gémez, F., Ventura, I.

Approximating planar subdivisions and generalized Voronoi diagrams

from random sections......... i 27
Coll, N., Hurtado, F., Sellares, J.A.

Sweeping an arrangement of quadricsin 3D oL 31
Mourrain, B., Técourt, J.-P., Teillaud, M.

Parametric voxel geometry control for digital morphogenesis.......... 35
Fischer, Th., Fischer, To.

Controlled perturbation for arrangements of circles..................... 41

Halperin, D., Leiserowitz, E.

Vertex cover and connected guard setL 45
Zylinski, P.

An optimal competitive on-line algorithm for the minimal clique 49
Jaromezyk, J.W., Pezarski, A., Slusarek, M.

Convex sets in graphs i 23
Caéceres, J., Marquez, A., Oellermann, O.R., Puertas, M.L.

Graphs of triangulations and perfect matchings......................... o7
Houle, M., Hurtado, F., Noy, M., Rivera-Campo, E.
Computing the detour of polygons............ 61

Griine, A., Klein, R., Langetepe, E.

More results about spanners in the /;-metric............................ 65
Caceres, J., Grima, C.I., Marquez, A., Moreno-Gonzalez, A.

Approximately matching polygonal curves under translation, rotation

and scaling with respect to the Fréchet-Distance........................ 69
Clausen, M., Mosig, A.

The polytope of non-crossing graphs on a planar point set............. 73
Orden, D., Santos, F.

Affine representations of abstract convex geometries.................... 7

Kashiwabara, K., Nakamura, M., Okamoto, Y.

Maximum subsets in Euclidean position in Euclidean 2-orbifolds and the
SPRET e . .. 81
Abellanas, M., Cortés, C., Hernandez, G., Marquez, A., Valenzuela, J.

Optimal pants decompositions and shortest freely homotopic loops on an

orientable surface............. ... 85
Colin de Verdiere, E., Lazarus, F.
Geometric games on triangulations L 89

Aichholzer, O., Bremner, D., Demaine, E.D., Hurtado, F., Kranakis, E., Krasser,
H., Ramaswami, S., Sethia, S., Urrutia, J.

Cutting triangular cycles of lines in space 93
Aronov, B., Koltun, V., Sharir, M.
Red-blue separability problems in 3Dol 97

Hurtado, F., Seara, C., Sethia, S.

The maximum number of edges in a three-dimensional grid drawing 101
Bose, P., Czyzowicz, J., Morin, P., Wood, D.R.

Constrained higher order Delaunay triangulations..................... 105
Gudmundsson, J., Haverkort, H., van Kreveld, M.

An approach to exhaustive generation of objects without testing on iso-
morphisms. Application of the method to the cell growth problem .. 109
Alboul, L., Netchaev, A.

Kinetic convex hull maintenance using nested convex hulls........... 113
Razzazi, M.R., Sajedi, A.

ii

Optimal tolerancing in mechanical design using polyhedral computation

170 70 £ 117
Fukuda, K., Petit, J-P.

Approximating the visible region of a point on a terrain 121
Boaz, B.-M, Paz, C., Katz, M.J.

Pheromone-guided dispersion for swarms of robots.................... 125
Hsiang, T.-R, Sztainberg, M.

Orthogonal segment stabbing.......... 129
Katz, M.J., Mitchell, J.S.B., Nir, Y.

Alternating paths along orthogonal segments........................... 133
Téth, C.D.

Shortest paths in polygonal domains with polygon-meet constraints. 137
Khosravi, R., Ghodsi, M.

Tiling polyominoes with squares that touch the boundary............ 143
Spillner, A.
Best fitting rectangles........ 147

Abellanas, M., Hurtado, F., Icking, C., Ma, M., Palop, B., Ramos, P.A.

Algorithms for placing and connecting facilities and their comparative

ANAlY SIS . . 151
Kedem, K., Rabaev, 1., Sokolovsky, N.
Chips on wafers, or packing rectangles into grids 155

Andersson, M., Gudmundsson, J., Levcopoulos, C.

Unit height k-position map labeling 159
Rostamabadi, F., Ghodsi, M.

Good NEWS: Partitioning a simple polygon by compass directions..165
van Kreveld, M., Reinbacher, I.

Significant-presence range queries in categorical data.................. 169
de Berg, M., Haverkort, H.J.

Efficient contour tree construction and computation of Betti numbers in
scalar flelds 173
Lenz, T., Rote, G.

Author Index ... 177

List of Participants

iii

iv

Preliminary Program

Monday, March 24th

08:00 — 09:00
09:00 — 09:10
09:30 — 09:50
09:30 — 09:50
09:50 - 10:10
10:10 - 10:30
10:30 — 11:00
11:00 — 11:20
11:20 — 11:40
11:40 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 — 14:20
14:20 — 14:40
14:40 - 15:00

Registration and welcome reception
Welcome

The one-round Voronoi game replayed
Fekete, S.P., Meijer, H.

The Voronoi diagram for n disjoint spherical sites of O(1)
different radii has complexity O(n?)
o) Dunlaing, C.

The anchored Voronoi diagram:
versions and applications
Barcia, J.A., Diaz-Béanez, J.M., Gémez, F., Ventura, I.

Static and dynamic

Approximating planar subdivisions
Voronoi diagrams from random sections
Coll, N., Hurtado, F., Sellares, J.A.

Coffee break

and generalized

Sweeping an arrangement of quadrics in 3D
Mourrain, B., Técourt, J.-P., Teillaud, M.

Parametric voxel geometry control for digital morpho-
genesis
Fischer, Th., Fischer, To.

Controlled perturbation for arrangements of circles
Halperin, D., Leiserowitz, E.

Lunch

Invited Lecture:
Geometric approximation using core sets
Pankaj Kumar Agarwal, Duke University

Coffee break

Vertex cover and connected guard set

Zylinski, P.

An optimal competitive on-line algorithm for the minimal
clique

Jaromezyk, J.W., Pezarski, A., Slusarek, M.

15:00 — 15:20
15:20 — 15:40
15:40 - 16:00
16:00 — 16:20
16:20 — 16:40
16:40 — 17:00
Tuesday,
09:00 - 10:00
10:00 - 10:20
10:20 — 10:40
10:40 — 11:00
11:00 — 11:20
11:20 — 11:40
11:40 — 12:00
12:00 - 13:00
13:00 — 13:20

Convex sets in graphs
Caceres, J., Marquez, A., Oellermann, O.R., Puertas, M.L.

Graphs of triangulations and perfect matchings
Houle, M., Hurtado, F., Noy, M., Rivera-Campo, E.

Coffee break

Computing the detour of polygons
Griine, A., Klein, R., Langetepe, E.

More results about spanners in the /;-metric
Céceres J., Grima, C.I., Marquez, A., Moreno-Gonzalez, A.

Approximately matching polygonal curves under trans-
lation, rotation and scaling with respect to the Fréchet-
Distance

Clausen, M., Mosig, A.

March 25th

Invited lecture:

Approximation algorithms for geometric shortest path
problems

Jorg-Riidiger Sack, Carleton University

Coffee break

The polytope of non-crossing graphs on a planar point set
Orden, D., Santos, F.

Affine representations of abstract convex geometries
Kashiwabara, K., Nakamura, M., Okamoto, Y.

Maximum subsets in Euclidean position in Euclidean
2-orbifolds and the sphere

Abellanas, M., Cortés, C., Herndndez, G., Méarquez, A., Valen-
zuela, J.

Optimal pants decompositions and shortest freely homo-
topic loops on an orientable surface

Colin de Verditre, E., Lazarus, F.

Geometric games on triangulations
Aichholzer, O., Bremner, D., Demaine, E.D., Hurtado, F.,
Kranakis, E., Krasser, H., Ramaswami, S., Sethia, S., Urrutia, J.

Lunch

Cutting triangular cycles of lines in space
Aronov, B., Koltun, V., Sharir, M.

13:20 — 13:40
13:40 — 14:00
14:00 — 14:20
14:20 — 14:40
14:40 — 15:00
15:00 — 15:20
15:40 - 16:00
16:00 — 16:20
16:20 — 16:40
16:40 — 17:00
19:30

Red-blue separability problems in 3D
Hurtado, F., Seara, C., Sethia, S.

The maximum number of edges in a three-dimensional grid
drawing
Bose, P., Czyzowicz, J., Morin, P., Wood, D.R.

Coffee break

Constrained higher order Delaunay triangulations
Gudmundsson, J., Haverkort, H., van Kreveld, M.

An approach to exhaustive generation of objects without
testing on isomorphisms. Application of the method to the
cell growth problem

Alboul, L., Netchaev, A.

Kinetic convex hull maintenance using nested convex hulls
Razzazi, M.R., Sajedi, A.

Optimal tolerancing in mechanical design using polyhedral
computation tools
Fukuda, K., Petit, J-P.

Approximating the visible region of a point on a terrain
Boaz, B.-M, Paz, C., Katz, M.J.

Pheromone-guided dispersion for swarms of robots
Hsiang, T.-R, Sztainberg, M.

Business meeting

Conference dinner

Wednesday, March 26th

09:15 - 10:15
10:15 — 10:40
10:40 - 11:00
11:00 - 11:20
11:20 — 11:40

Invited lecture:
Similarity between image and terrain:

proaches to computer vision
Tetsuo Asano, JAIST

Coffee break

Orthogonal segment stabbing
Katz, M.J., Mitchell, J.S.B., Nir, Y.

Geometric ap-

Alternating paths along orthogonal segments
Téth, C.D.

Shortest paths in polygonal domains with polygon-meet
constraints
Khosravi, R., Ghodsi, M.

11:40 - 12:00
12:00 - 13:00
13:00 - 13:20
13:20 — 13:40
13:40 — 14:00
14:00 — 14:20
14:40 — 15:00
15:00 — 15:20
15:20 — 15:40
15:40 — 15:45

Tiling polyominoes with squares that touch the boundary
Spillner, A.

Lunch

Best fitting rectangles
Abellanas, M., Hurtado, F., Icking, C., Ma, M., Palop, B., Ramos,
P.A.

Algorithms for placing and connecting facilities and their

comparative analysis
Kedem, K., Rabaev, 1., Sokolovsky, N.

Chips on wafers, or packing rectangles into grids
Andersson, M., Gudmundsson, J., Levcopoulos, C.

Unit height k-position map labeling
Rostamabadi, F., Ghodsi, M.

Good NEWS: Partitioning a simple polygon by compass

directions
van Kreveld, M., Reinbacher, I.

Significant-presence range queries in categorical data
de Berg, M., Haverkort, H.J.

Efficient contour tree construction and computation of
Betti numbers in scalar fields
Lenz, T., Rote, G.

Good-bye

Thursday, March 27th

10:00 — 14:00

Excursion

Invited Lectures

Geometric Approximation using Core Sets

Pankaj Kumar Agarwal
Duke University, USA

ABSTRACT

This talk presents a general approximation technique for various geometric
optimization problems such as clustering, shape-fitting, and extent measures.
For a given objective function p and a parameter ¢ > 0, it computes in
time O(n + 1/e9M) a subset Q C P of size 1/e°()), with the property that
(1 —e)u(P) < pu(Q) < u(P). Specific applications of our technique include
e-approximation algorithms for (i) computing diameter, width, and smallest
bounding box, ball, and cylinder of P, (ii) maintaining these measures in a
streaming model, (iii) maintaining these measures for a set of moving points,
(iv) fitting spheres and cylinders through a point set P, and (iv) clustering
stationary and moving points.

Similarity between Image and Terrain:
Geometric Approaches to Computer Vision

Tetsuo Asano
School of Information Science, JAIST, Japan

Abstract

Image and terrain have strong similarity in the sense that both of them are commonly rep-
resented in matrices. Each matrix element is height information for terrain and color/bright-
ness for image. Terrain is usually converted to a contour representation that is a collection
of contour lines of equal height. Our projects start with this similarity. That is, we apply
conour representation to images. Once an image is converted to contour representation, it
is now a geometric object to which a rich source of geometric algorithms can be applied.
Another advantage of such geometric representation is that it gives us global information or
structural information of images. It should be compared to the traditional approach using a
quad-tree data structure on image lattice for characterizing a structure of an image.

In this talk I will first survey how computational geometry has contributed to computer
vision and computer graphics mainly in connection to the contour representation. Several
topics are included: an efficient algorithm for obtaining contour representation from a given
image matrix with some experimental results, how to represent structural information among
contour lines and how to compute it efficiently without following all contour lines — contour
tree, direct application of contour representation to geometric deformation of an image such
as scaling operation for enlargement or contraction, rotation, and removing a part of an
image. Such deformations may look easy tasks, but simple algorithms may produce ugly
images. In fact, contraction of an image seems to be the easiest task among them, but it is
related to some combinatorial optimization problem.

A natural way of defining a contour line for a brightness level i is to follow the boundary
of a connected region of pixels with brightness levels greater than or equal to 7, which results
in a closed loop consisiting of alternating horizontal and vertical line segments. How to
approximate such a rectilinear path by a smoother curve such as Basier or Spline curve
is also an interesting topic. It is not so obvious due to an important property of contour
representation that any contour line does not properly intersect itself or any other contour
line. If we use a polygonal line instead of those curves then we can prove some convergence
theory that the length of the polyline converges to the true length of an object characterized
by the contour line with increase of resolution.

Contour lines play an important role for region segmentation, a basic task in pattern
recognition. Region segmentation is to separate an object from its background. If brightness
levels in an objact are well separated to those in the background, it is easy to find an
appropriate contour line enclosing the object. Otherwise, we could find appropriate contour
line by evaluating separation of every contour line. A serious problem of this approach is
its computing time. Fortunately, we could use a rough region segmentation restricted to
x-monotone shapes using dynamic programming as a guide of our objective contour line.

10

Approximation algorithms for geometric
shortest path problems®

Jorg-Riidiger Sack!

ABSTRACT

Shortest path problems are among the fundamental problems studied in
computational geometry, network optimization and graph algorithms. These
problems arise naturally in application areas such as robotics and geograph-
ical information systems. Aside from the importance of shortest paths prob-
lems in their own right, often they appear in the solutions to other problems.

Shortest path problems can be categorized by various factors which in-
clude the dimensionality of the space, the type and the number of objects or
obstacles, and the distance measure used (e.g., Euclidean, number of links, or
weighted distances). In two and three dimensions a variety of shortest path
problems have been studied over the last three decades. Particular problem
instances studied include computing Euclidean shortest paths between two
points inside a simple polygon and amidst polygonal and polyhedral obsta-
cles, reporting shortest paths on the surface of a convex or a non-convex
polyhedron, including approximation algorithms. Research articles and sur-
veys have been written presenting the state-of-the-art in this area.

Of particular interest for this talk is the weighted region problem which
is a natural generalization of the Fuclidean shortest path problem. In 2-
dimensions it can be stated as: A planar triangulated subdivision is given
consisting of n faces, where each face has a positive weight which represents

*Research supported in part by NSERC and SUN Microsystems of Canada.

tSchool of Computer Science, Carleton University, Ottawa, Canada KI1S 5B6.
sack@scs.carleton.ca Some of the work discussed in this talk is jointly carried out with
A. Maheshari and L. Aleksandrov.

11

the cost of traveling through that face. The weight could be determined e.g.,
by the slope or other characteristics of the face (water, forest, rock, ...). The
cost of travel through the face is the product of Euclidean length and face-
weight. The cost of a (weighted) path is sum of the costs of travel through
all faces intersected by the path.

Existing algorithms for many of the interesting shortest path problems
are either very complex in design/implementation and/or have very large
time and space complexities. Hence they are unappealing to practitioners
and pose a challenge to theoreticians. This coupled with the fact that geo-
graphic/spatial models are approximations of reality anyway and high-quality
paths are favored over optimal paths that are “hard” to compute, approxi-
mation algorithms are suitable and necessary.

In this talk, we discuss the classical geometric problem of determining
shortest paths through weighted (and unweighted) domains (in 2 and 3 di-
mensions). We present several approximation algorithms and discuss them
from a practical and/or theoretical view-point.

12

Contributions

13

14

The One-Round Voronoi Game Replayed

Séndor P. Fekete *

Abstract

We consider the one-round Voronoi game, where the
first player (“White”, called “Wilma”) places a set of
n points in a rectangular area Q of aspect ratio p <
1, followed by the second player (“Black”, called
“Barney”), who places the same number of points.
Each player wins the fraction of Q closest to one
of his points, and the goal is to win more than half
of the total area. This problem has been studied by
Cheong et al. who showed that for large enough n
and p = 1, Barney has a strategy that guarantees a
fraction of 1/2 + a, for some small fixed o.

We resolve a number of open problems raised by
that paper. In particular, we give a precise character-
ization of the outcome of the game for optimal play:
We show that Barney has a winning strategy for
n>3andp > +/2/n, and forn =2 and p > v/3/2.
Wilma wins in all remaining cases, i.e., for n > 3
and p < \/E/n, forn =2 and p < \/3/2, and for
n = 1. We also discuss complexity aspects of the
game on more general boards, by proving that for a
polygon with holes, it is NP-hard to maximize the
area Barney can win against a given set of points by
Wilma.

Keywords:

Voronoi diagram, Voronoi game, Competitive fa-
cility location, NP-hardness.

1 Introduction

When determining success or failure of an enter-
prise, location is one of the most important issues.
Probably the most natural way to determine the
value of a possible position for a facility is the dis-
tance to potential customer sites. Various geometric
scenarios have been considered; see the extensive
list of references in the paper by Fekete, Mitchell,
and Weinbrecht [6] for an overview.

*Abt. fiir Mathematische Optimierung, TU Braunschweig, D-
38106 Braunschweig, Germany, s . fekete@tu-bs.de.

"Dept. of Computer Science, Queen’s University, Kingston,
Ont K7L 3N6, Canada, henk@cs.queensu.ca. Partially sup-
ported by NSERC. This work was done while visiting TU Braun-
schweig.

15

Henk Meijer ¥

One particularly important issue in location the-
ory is the study of strategies for competing players.
See the surveys by Tobin, Friesz, and Miller [8], by
Eiselt and Laporte [4], and by Eiselt, Laporte, and
Thisse [5].

A simple geometric model for the value of a posi-
tion is used in the Voronoi game, which was pro-
posed by Ahn et al. [1] for the one-dimensional
scenario and extended by Cheong et al. [2] to the
two- and higher-dimensional case. In this game, a
site s “owns” the part of the playing arena that is
closer to s than to any other site. Both considered a
two-player version with a finite arena Q. The play-
ers, White (“Wilma”) and Black (“Barney”), place
points in Q; Wilma plays first. No point that has
been occupied can be changed or reused by either
player. Let W be the set of points that were played
by the end of the game by Wilma, while B is the
set of points played by Barney. At the end of the
game, a Voronoi diagram of W U B is constructed;
each player wins the total area of all cells belonging
to points in his or her set. The player with the larger
total area wins.

Ahn et al. [1] showed that for a one-dimensional
arena, i.e., a line segment [0,2n], Barney can win
the n-round game, in which each player places a
single point in each turn; however, Wilma can keep
Barney’s winning margin arbitrarily small. This dif-
fers from the one-round game, in which both players
get a single turn with n points each: Here, Wilma
can force a win by playing the odd integer points
{1,3,...,2n— 1}; again, the losing player can make
the margin as small as he wishes. The used strategy
focuses on “key points”. The question raised in the
end of that paper is whether a similar notion can be
extended to the two-dimensional scenario. We will
see in Section 3 that in a certain sense, this is indeed
the case.

Cheong et al. [2] showed that the two- or higher-
dimensional scenario differs significantly: For suffi-
ciently large n > ng and p = 1, the second player
has a winning strategy that guarantees at least a
fixed fraction of 1/2 4 o of the total area. Their
proof used a clever combination of probabilistic ar-
guments to show that Barney will do well by playing

a random point. The paper gives rise to some inter-
esting open questions:

e How large does ngy have to be to guarantee a
winning strategy for Barney? Wilma wins for
n= 1, butitis not clear whether there is a single
ng for which the game changes from Wilma to
Barney, or whether there are multiple changing

points.

Barney wins for sufficiently “fat” arenas, while
Wilma wins for the degenerate case of a line.
How exactly does the outcome of the game de-
pend on the aspect ratio of the playing board?

What happens if the number of points played
by Wilma and Barney are not identical?

What configurations of white points limit the
possible gain of black points? As candidates,
square or hexagonal grids were named.

What happens for the multiple-round version
of the game?

e What happens for asymmetric playing boards?

For rectangular boards and arbitrary values of n,
we will show when Barney can win the game. If the
board Q has aspect ratio p with p < 1, we prove the
following:

e Barney has a winning strategy for n > 3 and
p> \/E/n, andforn=2andp > \/5/2 Wilma
wins in all remaining cases, i.e., for n > 3 and
p < V/2/n, forn =2 and p < v/3/2, and for

n=1.

o If Wilma does not play her points on an orthog-
onal grid, then Barney wins the game.

In addition, we hint at the difficulties of more
complex playing boards by showing the following:

e If O is a polygon with holes, and Wilma has
made her move, it is NP-hard to find a posi-
tion of black points that maximizes the area
that Barney wins.

This result is also related to recent work by
Dehne, Klein, and Seidel [3] of a different type:
They studied the problem of placing a single black
point within the convex hull of a set of white points,
such that the resulting black Voronoi cell in the
unbounded Euclidean plane is maximized. They
showed that there is a unique local maximum.

The rest of this paper is organized as follows. Af-
ter some technical preliminaries in Section 2, Sec-
tion 3 shows that Barney always wins if Wilma does

16

not place her points on a regular orthogonal grid.
This is used in Section 4 to establish our results on
the critical aspect ratios. Section 5 presents some
results on the computational complexity of playing
optimally in a more complex board. Some conclud-
ing thoughts are presented in Section 6.

For this 4-page abstract, all proofs have been
omitted; a full version of the paper [7] is available
electronically.

2 Preliminaries

In the following, Q is the playing board. Q is a rect-
angle of aspect ratio p, which is the ratio of the
length of the smaller side divided by the length of
the longer side. Unless noted otherwise (in some
parts of Section 5), both players play n points; W
denotes the n points played by Wilma, while B is
the set of n points played by Barney. All distances
are measured according to the Euclidean norm. For
a set of points P, we denote by V(P) the (Euclidean)
Voronoi diagram of P. We call a Voronoi diagram
V(P) aregular grid if

e all Voronoi cells are rectangular, congruent and
have the same orientation;

e cach point p € P lies in the center of its Voronoi
cell.

If e is a Voronoi edge, C(e) denotes a Voronoi cell
adjacent to e. If p € P, then C(p) denotes the
Voronoi cell of p in V(P). dC(p) is the boundary
of C(p) and |C(p)| denotes the area of C(p). |e| de-
notes the length of an edge e. Let x, and y, denote
the x- and y-coordinates of a point p.

3 A Reduction to Grids

As a first important step, we reduce the possible con-
figurations that Wilma may play without losing the
game. The following holds for boards of any shape:

Lemma 1 If V(W) contains a cell that is not point
symmetric, then Barney wins.

The following theorem is based on this observa-
tion and will be used as a key tool for simplifying
our discussion in Section 4.

Theorem 2 If the board is a rectangle and if V(W)
is not a regular grid, then Barney wins.

4 Critical Aspect Ratios

In this section we prove the main result of this paper:
ifn>3andp > +/2/n,orn=2andp > +/3/2, then
Barney wins. In all other cases, Wilma wins. The
proof proceeds by a series of lemmas. We start by
noting the following easy observation.

Lemma 3 Barney wins, if and only if he can place
a point p that steals an area strictly larger than
|O|/2n from W.

Next we take care of the case n = 2; this lemma
will also be useful for larger n, as it allows further
reduction of the possible arrangements Wilma can
choose without losing.

Lemma4 If n =2 and p > /3/2, then Barney
wins. If the aspect ratio is smaller, Barney loses.

The gain for Barney is small if p is close to v/3/2.
Computer experiments have been used to compute
the gain for Barney for values of p > 1/3/2. Not
surprisingly, the largest gain was found for p = 1. If
the board has size 1 by 1, Barney can gain an area of
approximately 0.2548 with his first point, by placing
it at (0.66825,0.616). as illustrated in Figure 1(a).

Lemma 5 Suppose that the board is rectangular
and that n = 4. If Wilma places her point on a regu-
lar 2 x 2 grid, Barney can gain 50.78% of the board.

The value in the above lemma is not tight. For
example, if Wilma places her point in a 2 by 2
grid on a square board, we can compute the area
that Barney can gain with his first point. If Bar-
ney places it at (0.5,0.296), he gains approximately
0.136. For an illustration, see Figure 1(b). By plac-
ing his remaining three points at (0.25 —4¢/3,0.25),
(0.25—4¢/3,0.75), and (0.75 4 4¢/3,0.75) Barney
can gain a total area of size of around 0.511 — € for
arbitrary small positive €. For non-square boards,
we have found larger wins for Black. This suggests
that Barney can always gain more than 51% of the
board if Wilma places her four points in a 2 by 2
grid.

The above discussion has an important implica-
tion:

Corollary 6 If n > 3, then Wilma can only win by
placing her points in a 1 X n grid.

This sets the stage for the final lemma:

Lemma 7 Let n > 3. Barney can win if p > /2/n;
otherwise, he loses.

17

Computational experiments have confirmed that
Barney wins the largest area with his first point if he

places it at (0, (4r —2v/r> 4+ 6)/3).

Theorem 8 If n > 3 and p > \/2/n, or n =2 and
p > \/3/2, then Barney wins. In all other cases,
Wilma wins.

S A Complexity Result

The previous section resolves most of the questions
for the one-round Voronoi game on a rectangular
board. Clearly, there are various other questions
related to more complex boards; this is one of the
questions raised in [2]. Lemma 1 still applies if
Wilma’s concern is only to avoid a loss. More-
over, it is clear that all of Wilma’s Voronoi cells
must have the same area. For many boards, both
of these conditions may be impossible to fulfill. It
is therefore natural to modify the game by shifting
the critical margin that decides a win or a loss. We
show in the following that it is NP-hard to decide
whether Barney can beat a given margin for a poly-
gon with holes, and all of Wilma’s stones have al-
ready been placed. (In a non-convex polygon, pos-
sibly with holes, we measure distances according to
the geodesic Euclidean metric, i.e., along a shortest
path within the polygon.)

Theorem 9 For a polygon with holes, it is NP-hard
to maximize the area Barney can claim, even if all
of Wilma’s points have been placed.

6 Conclusion

We have resolved a number of open problems deal-
ing with the one-round Voronoi game. There are still
several issues that remain open. What can be said
about achieving a fixed margin of win in all of the
cases where Barney can win? We believe that our
above techniques can be used to resolve this issue.
As we can already quantify this margin if Wilma
plays a grid, what is still needed is a refined version
of Lemma 1 and Theorem 2 that guarantees a fixed
margin as a function of the amount that Wilma devi-
ates from a grid. Eventually, the guaranteed margin
should be a function of the aspect ratio. Along sim-
ilar lines, we believe that it is possible to resolve
the question stated by [2] on the scenario where the
number of points played is not equal.

Probably the most tantalizing problems deal with
the multiple-round game. Given that finding an op-
timal set of points for a single player is NP-hard,

0.66825

1.0
area ~ 0.?548
0751 |
ffffffffffffff 0.616
0.5 + (e}
q
0.25¢
0.25 0.5 0.75 1.0

(a)

1.0
075} o o
051
area ~0.136
0.296
0.25¢ o
025 0.5 0.75 1.0

(b)

Figure 1: Barney has gained more than a quarter (a) more than an eighth (b) of the playing surface.

it is natural to conjecture that the two-player, mul-
tiple round game is PSPACE-hard. Clearly, there
is some similarity to the game of Go on an n x n
board, which is known to be PSPACE-hard [9] and
even EXPTIME-complete [10] for certain rules.

However, some of this difficulty results from the
possibility of capturing stones. It is conceivable that
at least for relative simple (i.e., rectangular) boards,
there are less involved winning strategies. Our re-
sults from Section 4 show that for the cases where
Wilma has a winning strategy, Barney cannot pre-
vent this by any probabilistic or greedy approach:
Unless he blocks one of Wilma’s key points by plac-
ing a stone there himself (which has probability zero
for random strategies, and will not happen for sim-
ple greedy strategies), she can simply play those
points like in the one-round game and claim a win.
Thus, analyzing these key points may indeed be the
key to understanding the game.

References

[1] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Go-
lin, and R. van Oostrum. Competitive facility
location along a highway. In Proc. 9th CO-
COON, Springer LNCS # 2108, pages 237-
246, 2001.

O. Cheong, S. Har-Peled, N. Linial, and J. Ma-
tousek. The one-round Voronoi game. In Proc
18th SoCG, pages 97-101, 2002.

18

[3] Frank Dehne, Rolf Klein, and Raimund Sei-
del. Maximizing a Voronoi region: The con-
vex case. In Proc. 13th ISAAC, Springer LNCS
#2518, pages 624-634,2001.

H.A. Eiselt and G. Laporte. Competitive spa-
tial models. European Journal of Operational
Research, 39:231-242, 1989.

[5] H.A. Eiselt, G. Laporte, and J.-F. Thisse. Com-
petitive location models: A framework and
bibliography. Transportation Science, 27:44—

54, 1993.

S. P. Fekete, J. S. B.Mitchell, and K. Wein-
brecht. On the continuous Weber and k-median
problems. In Proc. 16th SoCG, pages 70-79,
2000.

[7]1 S.P. Fekete and H. Meijer. The one-round
Voronoi game replayed. http://mo.math.nat

.tu-bs.de/ fekete/publications.html, 2002.

[8] T.L. Friesz, R.L. Tobin, and T. Miller. Exis-
tence theory for spatially competitive network
facility location models. Annals of Operations

Research, 18:267276, 1989.

D. Lichtenstein and M. Sipser. Go is
polynomial-space hard. Journal of the
ACM,27:393401, 1980.

[10] J.M. Robson. The complexity of Go. In Infor-
mation Processing: Proceedings of IFIP Con-

gerss,pages 4134417, 1983.

The Voronoi diagram for n disjoint spherical sites of O(1)
different radii has complexity O(n?)
(extended abstract)

Colm O Dinlaing*
Mathematics, Trinity College, Dublin 2, Ireland

Abstract

It is proved that if S is a set of n disjoint spherical sites in R®, of at most k different radii,
then the cell owned by a smallest site has fewer than 3*~'n different faces.

It follows that the Voronoi diagram of S has complexity O(n?), assuming a bound on the
number of different radii among the sites in S.

It is also shown that without the bound on the number of different radii, the cell owned
by a point site can have complexity Q(n?).

1 Voronoi diagrams

This paper considers the Voronoi diagrams of spherical sites in R?. For a general survey of Voronoi
diagrams see, e.g., [1]. The current state of knowledge about the complexity of Voronoi diagrams,
in 3 dimensions, is scanty. It is known to be O(n?) for n point sites, and this bound is tight.
When the sites are straight lines, the complexity is known to be o(n?*€) for all € > 0, granted that
either the distance function is polyhedral, based on a fixed convex polyhedron [2], or the distance
is Euclidean but the lines are in O(1) different directions [3].

The so-called sites will be a set S of n disjoint closed balls in R®. The Voronoi diagram of S
is the set of points in R® which have more than one site closest to them. The Voronoi diagram is
a 2-dimensional complex with faces, edges, and vertices. The faces are connected subsets of what
we call bisectors.

1.1 Definition. Let B and B’ be disjoint spherical sites (point sites are allowed), Then the
(B, B')-bisector is the Voronoi diagram of {B, B'}, that is, the set of points equidistant from B
and B'.

1.2 Lemma. If B and B’ are spherical sites with radii v,7' respectively, where v > 1’ > 0, then
the bisector of B and B' is a plane if r = r' and a (single sheet of a 2-sheeted) hyperboloid of
revolution, whose axis is the line joining their centres, if r > r'.

In either case, the bisector partitions R? into two regions, and that containing B' is convez.
See Figure 1. O

1.3 Corollary. Suppose that S is a set of disjoint spherical sites whose minimum radius is ry.
Let S’ be the set of spherical sites obtained by replacing every site B in s by a site with same
centre and radius v — ry, where r is the radius of B.

Then Vor(S) = Vor(S'), and the smallest sites in S’ are point sites. O

1.4 Definition. Let B be one of the sites in a set S of disjoint spherical sites. The Voronoi cell
of B consist of all points which are as close, or closer to, B than to any other site in S.

*e-mail: odunlain@maths.tcd.ie. Mathematics department website: http://www.maths.tcd.ie.

19

Figure 1: The bisector is a hyperboloid of revolution.

Clearly, the Voronoi diagram is the union of boundaries of cells of all sites in S.
The complexity of the Voronoi diagram for point sites is known:

1.5 Proposition. If S is a set of n point sites, then Vor(S) has n cells and O(n?) faces, edges,
and vertices. This bound is tight. O

1.6 Lemma. Let C be a collection of sets S of disjoint spherical sites in R3. Let M(n) denote
the mazimum complezity of Vor(S) for all S € C such that |S| = n. Then M(n) is O(n?) if and
only if for every S € C, Vor(S) contains a cell of complezity O(|S|). O

2 Re-inflating deflated sites

It is our aim to show that when S is a set of disjoint spherical sites with at most k distinct radii,
and B is a site of minimum radius in S, then its cell in Vor(S) has at most 3% 1n faces. With k
fixed it can be regarded as having O(n) different faces, and hence its complexity is O(n). This is
enough (Lemma 1.6) to ensure that Vor(S) has complexity O(n?), when the number of different
radii occurring among the sites in S is bounded.

(2.1) Inflating sites. We imagine the sites being ‘inflated’ to their correct size: an increasing
parameter 7 is given, and S(r) is the set of sites with their radius bounded by r. As r increases,
the sites inflate until all have reached their correct radius. We study how the Voronoi diagram
evolves.

2.2 Definition. Let S be a set of n spherical sites with centres ¢; and radii ;. For any r > 0, the
r-bounded version S(r) of S is the set of n sites whose centres are ¢; but whose radii are min(r;, 7).

We can assume (Corollary 1.3) that S contains a point site. For the remainder of this section,
p will denote a point site in S.

2.3 Definition. Suppose that B is a site in S(r). If the corresponding site in S has radius > r
then we say B is expanding, otherwise it is stable.

A face, edge, or vertex of Vor(S(r)) is called stable, transient static, or moving according as
all sites closest to it are stable, all are expanding, or some but not all are expanding, respectively.

2.4 Definition. C(r) will denote the cell owned by p in Vor(S(r)).
2.5 Lemma. C(r) is convex. (Immediate from Lemma 1.2.) O

We consider the evolution of C(r) as 7 increases (up to the maximum radius occurring in S).
C(0) is a convex polyhedron with at most n — 1 faces. As r increases, some of these faces
become curved, and new faces appear and disappear.

2.6 Lemma. The only way a new face can be introduced to C(r) is when a bisector passes through
a stable or transient static vertez of C(r).

20

Figure 2: Cell of p has Q(n?) incident edges.

Sketch proof. We must consider all possible ways in which the number of faces of C(r) can
change. We classify them as follows:

(A) Several cases which turn out to be impossible:

(Ai) A face gets separated when two opposite edges touch.
(Aii) A face gets introduced when two bisectors touch.

(Aiii) A face gets introduced when a bisector touches an edge, and the face begins to separate
the edge.

(B) A bisector passes through a moving vertex.
(C) A bisector passes through a transient static vertex.
(D) A bisector passes through a stable vertex.
In case (B) a face disappears, and cases (C) and (D) are as predicted. O
2.7 Corollary. C(r) has at most 3*~! faces.
Sketch proof. Let

O=ri<re<...<rg

be the different radii occurring among the sites in .S. Whenever C(r) acquires a new face, a vertex
was lost under case (C) or (D). Suppose rs < r < r441. If case (D) applied, then that vertex
existed in C(ry), and we can assume by induction that there are at most 2 * 3% vertices in C(r;).
If the vertex did not exist in C(rs), then the vertex must have been introduced at some time r’,
rs < r' < r,in an event of type (B). But then a face was lost from C(r'), which can be offset
against the gain of a new face by C(r) through a type (C) event. O

3 The bound on number of radii is essential

Let p be a point site located at (0,0,0). Let H be the unit sphere centred at (0,0,1). H touches
p. Place n balls B; centred on the z-axis at (1/27,0,0) and tangent to H: they are disjoint. Place
n point sites p; around the circle z = 0,y* + 22 = 4. The points p, p; and the balls B; form a set
S of 2n + 1 sites.

The circle E : x = 0,32 + 2?2 = 1 is a degenerate edge where the cell of p in Vor(S) meets
those of the p; and the Bj.

Slightly expand the sites B;, and displace the point sites p; slightly towards p. The effect is to
replace E by n — 1 circles close to E, and the point sites p; split these n — 1 circles into n edges
each. The cell of p has more than n(n — 1) incident edges. The idea is illustrated in Figure 2.

21

References

. Franz Aurenhammer (1990). Voronoi diagrams— A survey of a fundamental geometric data
structure. ACM computing surveys 23.3, 345—405.

. L. Paul Chew, Klara Kedem, Micha Sharir, Boris Tagansky, and Emo Welzl (1998). Voronoi

diagrams of lines in 3-space under polyhedral convex distance functions. Journal of Algo-
rithms 29, 238-255.

. Vladlen Koltun and Micha Sharir (2002). Three dimensional Euclidean Voronoi diagrams of

lines with a fixed number of orientations. Proc. 18th Furopean Workshop on Computational
Geometry, 1-3.

22

The anchored Voronoi diagram: static and dynamic versions and
applications

J. A. Barcia* J. M. Diaz-Bdnez! F. Gémezt L. VenturdS

Abstract

Given a set S of n points in the plane and a fixed point o, we introduce the Voronoi diagram of S
anchored at o. It will be defined as an abstract Voronoi diagram that uses as bisectors the following
curves. For each pair of points p,q in S, the bisecting curve between p and g is the locus of points z in
the plane such that the line segment 07 is equidistant to both p and g. We show that those bisectors have
nice properties and, therefore, this new structure can be computed in O(nlogn) time and O(n) space.
Also, under a slightly different model of computation, we prove that the dynamic version of this diagram
can be built in O(n?Ags42(n)) time complexity, where s is a constant depending on the function that
describes the motion of the points. Both static and dynamic diagrams can be used for solving maximin
location problems, where the goal is the placement of a line segment connecting two fixed curves.

1 Introduction

Given a set of n sites in a continuous space, the subdivision of the space into regions, one per site, according
to some influence criterion is a central topic in Computational Geometry and it has been applied to many
fields of science. The standard name for this geometric structure is due to Voronoi, who proposed the
first formalization. Originally, this structure was used for characterizing regions of proximity for the sites.
Since then, mMany extensions and generalizations have been proposed (see the surveys [1, 5, 9]). Also,
other general approachs have been introduced [4, 8] where the concepts of site or distance functions are not
explicitly used. In this paper, we introduce an abstract Voronoi diagram in the sense of [8], the anchored
Voronoi diagram. In section 2, we formally define this structure, give some properties and show how to
compute it; we also give an application to a facility location problem. In section 3, we deal with the dynamic
version of the anchored diagram; in particular, we discuss the topological matters that lead to its construction
and, finally, we show how to apply this structure to solving some maximin problems. Those problems consist
of finding the bridge that connects to curves so that the minimum distance from the bridge to a given point
set is maximized. Concluding remarks of the paper are put forward in Section 4 .

2 The anchored Voronoi diagram

2.1 Definition and properties

Given a set S of n points in the plane, the Euclidean distance between two points p and ¢ will be denoted
by d(p,q). We define an anchored segment as a line segment when the initial point is fixed. Without loss
of generality, we will consider the anchor to be the origin. Finally, the distance between a point p and an
anchored segment connecting o with a point z € IR will be defined as d(p, o) := min{d(p,q) : ¢ € oz }.

*Departamento de Matemadtica Aplicada II , Universidad de Sevilla (jbarcia@us.es)

fDepartamento de Matematica Aplicada II , Universidad de Sevilla (dbanezQus.es)

fDepartamento de Matematica Aplicada I , Universidad Politécnica de Madrid (fmartin@eui.upm.es)
§Departamento de Matematicas, Universidad de Huelva (iventuraQus.es)

23

For any two different points p, ¢ in S, a bisecting curve L(p, q) is defined as the locus of points z in the plane
such that the line segment o is equidistant to both p and g, that is, L(p, q) = {z € IR : d(p,o%) = d(q,0%)}.
An exhaustive study of the properties and the shape of L(p,q) have been carried out in [2]. L(p,q) is
homeomorphic to a line and dissects the plane into two open domains D(p, q) and D(q, p) having L(p,q) as
boundary. We define the Anchored Voronoi Region AV R(p, S) to be the intersection of the domains D(p, q),
where ¢ € S\ {p}. Then the Anchored Voronoi Diagram AV D(S) of the bisecting curves L(p, q) is defined as
the union of all boundaries of at least two Voronoi region have in common. In Figure 1, all types of bisecting
curves are shown. Note that in the case (a.3) L(p, q) includes a region. In order to simplify the discussion
and for this degenerate situation,we will take L(p,q) = {z € IR? |d(p,z) = d(q,z)} as the bisector of the
line segment pgq.

c
L]
o’
0
L]
o B
D
L]
Figure 1: The locus L(p, q). Figure 2: AV D(S) for four points.

An edge can be composed into pieces which are either half-lines, or line segments, or arcs of a curve of degree
four or arcs of a circle (refer to Figure 2). A vertex of AV D(S) (defined by at most three points) can either
be a point or a half-line or an arc of circle. Note that vertices are defined as the intersections of the Voronoi
edges.

2.2 Computation

In order to compute the AV D(S), the divide & conquer approach given in [8] can be used. The system
L ={L(p,q) : p,q € S,p # q} is called admissible iff for each subset S’ of S of size at least 3 the following
conditions are fulfilled: (1) the Voronoi regions are path-connected; (2) each point of the plane lies in a
Voronoi region or on the Voronoi diagram; (3) the intersection of two bisecting curves only consists of
finitely many components. By using non-trivial geometrical properties, we have proved the following results.

Lemma 2.1 The set of locus L is an admissible system.

Theorem 2.1 The Anchored Voronoi Diagram of a set of point S in the plane can be constructed in
O(nlogn) time and O(n) space.

2.3 Application
We next show how to use the AV D(S) as a data structure for computing a solution for a location maximin
problem. The obnoxious anchored bridge problem is stated as follows:

OABP: Let S be a set of n points in IR*\{o} and let C be a curve (typically, in most applications, an
algebraic curve of constant degree). Compute a line segment connecting o with a point © on C for which
minye s d(p, 0T) is mazimized.

Typically, in most applications, curve C will be an algebraic curve of constant degree, a trigonometric function
or similar.The following results solve this problem.

24

Lemma 2.2 There ezists a point x* which is the intersection between the curve C and the structure AV D(S)
such that the segment ox* is a solution for the problem OABP.

Theorem 2.2 Once the AV D(S) is given, the problem OABP can be solved in linear time and space.

At this point, we should note that there are certain operations here that exceed the power of the usual real
RAM model. The model of computation should be augmented with the pertinent primitives as neccesary.

3 The dynamic anchored Voronoi diagram

We are given a finite set of n > 3 points S = {p1,...,pn} each moving along a polynomial trajectory of
maximum degree s, for some constant s. Let p;(t) denote the position of point p; at time ¢. We further
assume that the points move without collisions.

Definition 3.1 Given an anchored segment S of length | and € > 0, the locus of points that are at distance
€ from S is called an anchored hippodrome centered at S of radius €.

In our context, we consider the points in general position when no four points are co-hippodromal, in other
words, there not exists a hippodrome with four points on the boundary. We study how the structure
AV D(S(t)) changes with time. Similarly to the ordinary dynamic Voronoi diagram [6], AV D(S) changes
continuously but its combinatorial structure only changes at critical values of . We will call the dual graph
of AVD(S(t)) the anchored graph AG(S(t)).

3.1 Topological changes

In order to obtain a bound of the number of changes in AG(S(t)) we describe how an edge can be removed
or added to the graph as the points move. In the following, we characterize these elementary changes.

It follows from the definition of the anchored dual graph that there is an edge between two points if and only
if there exists an empty hippodrome that passes through those points (The converse is also true.) Let p;(t),
p;(t) be two points in S(t) and let be given a hippodrome that have them on its boundary. This hippodrome
determines a unique line segment, one of whose endpoints is the origin and the other is a point x;;(t). Of
course, x;;(t) lies on the Voronoi edge contained in the bisector curve L(p;(t),p;(t)). Let d;;(t) denote the
distance from point p;(t) to line segment ox;;(t). When a point py(t) enters into an empty hippodrome
given by points p;(t), p;(t), then a combinatorial change takes place. Such change will correspond to an
intersection between function d;;(t) and another function d; () or djx(t). What really matters here is when
the first point that enters into the empty hippodrome, which results in only considering the lower enveloppe
of the functions {d;;(t),i # j}. By examining those intersections, we can give an upper bound on the number
of topological changes.

We can see that any pair of functions {d;;(t),i # j} intersects at most 6s times. Hence, the number of
breakpoints of the lower envelope of the distance functions is O(Ags+2(n)). By repeating this argument for
all pair of points in S(¢), we obtain the desired upper bound. We thus conclude with the following theorem.

Theorem 3.1 The number of topological changes of the combinatorial structure of AV D(S(t)), when each
point in S moves along a trajectory defined by polynomial of mazimum degree s, is O(n*Xgs12(n)).

3.2 Computing the diagram

The topological structure of an anchored Voronoi diagram under continuous motions of the points in S can
be maintained dynamically. By using a similar approach to those in [3, 7], we are able to update the changes
in O(logn) time.

25

Theorem 3.2 The dynamic AV D(S) can be constructed in O(n?*Xgs12(n)logn) time.

3.3 Application

With the dynamic anchored Voronoi diagram we can solve a general problem for locating an obnoxious
bridge. Consider the problem of Section 2.3 but we suppose the anchor point o can be moved through a
polynomial trajectory. The problem now is:

OBP: Let S be a set of n points in IR*, P be a polynomial curve and C a curve. Compute a line segment
connecting P with C for which minpeg d(p,l) is mazimized.

Observe that we can solve this problem by fixing an endpoint of the segment [on a point of P and moving
the points in S along such a trajectory. Recall that the O ABP problem can be solved by finding the Voronoi
vertices for which the segment is the center of the largest empty hippodrome. Then, as ¢ varies, we maintain
for each Voronoi vertex the starting time to at which appears and also the time ¢; at which disappears.
Between tg and 1, we compute when the width of the corresponding hippodrome is maximized. Finally, by
keeping track of those maximum values, the general problem OBP can be solve within the time obtained
for the computation of the dynamic anchored Voronoi diagram.

4 Conclusion

We have introduced in this paper the anchored Voronoi diagram as an abstract Voronoi diagram. The
bisecting curves are induced by the distance to a line segment anchored at the origin. Also, for the dynamic
version we have found an upper bound based in a Davenport-Schinzel argument. We have finished by showing
an application, namely, solving a maxmin bridge problem.

References

[1] F.Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure, ACM
Comput. Surv. , 23, 1991, 345-405.

[2] J.A. Barcia, J.M. Diaz-Béfiez, A. Lozano and I. Ventura, Computing an obnoxious anchored
segment, to appear in Operations Research Letters, 2003.

[3] L.P. Chew, K. Kedem, A convex polygon among polygonal obstacles: placement and high-
clearance motion. Computational Geometry: Theory and Applications, 3 , 1993, 59-89.

[4] H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Computational
Geometry, 1, 1986, 25-44.

[5] S. Fortune, Voronoi diagrams and Delaunay trangulations, In Computing in Euclidean Geom-
etry, D.-Z. Du and F.K. Hwang, eds, Lectures Notes Series on Comput. 1, World Scientific,
Singapore, 1992, 193-233.

[6] L. Guibas, J.S.B. Mitchell and T. Roos, Voronoi Diagrams over Dynamic Scenes. Lecture Notes
in Computer Science, 570, 1991, 113-125.

[7] K. Imai, H. Imai, T. Tokuyama, Maximin location of convex objects in a polygon and related
dynamic Voronoi diagrams. Journal of the Operations Research, 42, 1999.

[8] R. Klein, Concrete and Abstract Voronoi Diagrams over Dynamic Scenes. Lecture Notes in
Computer Science, 400, 1989.

[9] A. Okabe, B. Boots and K. Sugihara, Spatial tessellations: concepts and applications of Voronoi
diagrams, Wiley, Chichester, UK, 1992.

26

Approximating planar subdivisions and generalized
Voronoi diagrams from random sections

Narcis Coll * Ferran Hurtado J.Antoni Sellares

Abstract

We present an algorithm for constructing from a set of sampled sections a piecewise-linear
approximation of an unknown planar subdivision, including generalized Voronoi diagrams as
outstanding example. The input of the algorithm is a set of lines uniformly distributed over the
theoretical subdivision. For each input line, the ordered set of sections in which the line and
the planar subdivision intersect is given or computed. The algorithm outputs a triangulation
from which the approximation of the unknown subdivision, both in the topological and the
metrical sense, can easily be extracted. The correctness of the algorithm and the evaluation
of its time complexity follow from results of Integral Geometry and Geometric Probability.

1 Introduction

We present an algorithm that allows to construct a piecewise-linear approximation of an unknown
planar subdivision from a set of sampled line-sections. The input of our algorithm is a sufficiently
“dense” set of lines uniformly distributed over a bounding box together with the ordered set of
sections in which each line intersects the theoretical planar subdivision. We want to remark that,
in the context of integral geometry and geometric probability, uniformly distributed means that
the probability that a line intersects a piece of the boundary of and edge, independent of its
location and orientation, is proportional to its length [17]. The algorithm outputs a triangulation
from which a planar subdivision approximating the unknown planar subdivision can easily be
extracted. The input lines are sequentially processed and the method is progressive, in the sense
that for each line we obtain a new approximation from the previous one.

Some of the ideas used in our algorithm extend previous work on reconstructing planar shapes
from random sections as a problem related to curve reconstruction [6]. Different cases of the curve
reconstruction problem have been treated: uniformly or non-uniformly sampled points, closed or
open curves, smooth or non-smooth curves and many algorithms have been proposed for all these
cases [2, 3, 4, 7, 8,9, 10, 11, 13, 14, 15]. The main difference between these algorithms and
ours is that all them compute the reconstruction off-line, while our algorithm works on-line. As
mentioned above, the fact that the random lines are sequentially processed as they arrive allows
also progressive refinement that may be tuned by the user.

The method can be applied to the construction of planar subdivisions, and in particular to
generalized Voronoi diagrams, that correspond to two-dimensional scenarios for which the whole

*Institut d’Informatica i Aplicacions, Universitat de Girona, Girona, Espafia (coll@ima.udg.es). Partially sup-
ported by grants TIC2000-1009, TIC2001-2226-C02-02 and DURSI 2001SGR-00296

TDepartament de Matematica Aplicada II, U.P.C, Barcelona, Espafa (hurtado@ma2.upc.es). Partially sup-
ported by MEC-DGES-SEUID PB98-0933, MCYT-FEDER BFM2002-0557 and DURSI 2001SGR00224

HInstitut d’Informatica i Aplicacions, Universitat de Girona, Girona, Espaia, (sellares@ima.udg.es). Partially
supported by grants TIC2000-1009, TIC2001-2226-C02-02 and DURSI 2001SGR-00296

27

structure is difficult to obtain, but such that its intersection with any given line is easy to compute
or to obtain with some device.

Voronoi diagrams are a fundamental structure in computational geometry, both for the rich
theory they embody as for the impressive variety and number of applications they have. Many
variants have been considered: by taking sites of different shape or nature, associating weights to
the sites, changing the underlying metrics, or using individualized distance functions for the sites.
Classic and generalized Voronoi diagrams are described in the surveys [1, 16].

The algorithms designed for computing exact generalized planar Voronoi diagrams often have
numerical robustness problems and are time-consuming due to the numerous high precision cal-
culations that are required. However in some applications (like motion planning or geographic
map simplification) the computation of an approximated Voronoi diagram within a predetermined
precision is sufficient, and several algorithms have been proposed for the approximation of Voronoi
diagrams [5, 12, 18, 19]. We present an algorithm for approximating generalized planar Voronoi
diagrams for different site shapes (points, line-segments, curve-arc segments, ...) and different
distance functions (Euclidean metrics, convex distance functions, ...). The algorithm is robust and
fast (in terms of running time). Moreover it is very general: not all the sites must be homogeneous
in shape or have associated the same distance function, and there are no restrictions on the con-
nectivity of the Voronoi regions —for a single site they may have several components—, the degree
of the Voronoi vertices, or the dimensionality of the bisectors.

2 Sketch of the method

We assume that the planar subdivision P to be approximated is contained in a tight axis-parallel
bounding-box K. The algorithm takes as input a set L of m lines uniformly distributed over K.
For each line I of L we have the ordered set S(I) of intersections between ! and the regions of
P. The algorithm outputs a triangulation T'(P) of K represented by a DCEL structure. Each
triangle of the T'(P) is assigned to one of the regions of P or to an auxiliary region that we call
background. From this triangulation it can easily be obtained, in cost linear with respect to the
number of triangles, the piecewise-linear approximation A(P) of P.

The main part of the algorithm processes the sections of the lines of L sequentially. When a new
section is considered, the triangles that contain the endpoints of the section are subdivided, and
a region determined by a subset of the triangles crossed by the section is retriangulated in order
to connect two vertices by an edge. The DCEL structure is actualized properly. To describe the
general idea followed to design the algorithm, we explain the particular case of the five sections of
Figure 1. First we introduce section a as an edge. Since section b intersects section a, a triangulated
quadrilateral that connects the endpoints of section b with the endpoints of section a is created.
As section ¢ do not intersect the quadrilateral, then it is inserted as an edge. Since section d
intersects section ¢, a second triangulated quadrilateral is also created. Section e intersects the
two quadrilaterals, then the endpoints of the section are connected with the quadrilaterals, and
the edges of the quadrilaterals crossed by the section are also connected. In order to guarantee the
desired cost of the algorithm, we maintain the length of the new edges produced by the subdivision
of the triangles inversely proportional to the number of processed lines.

We can prove, using results of Integral Geometry and Geometric Probability, that by taking
the number of lines m of L large enough the piecewise-linear subdivision A(P) obtained with our
algorithm tends to the planar subdivision P in both the topological and the metrical sense, and
we can show also that the mean computational cost of the algorithm is O(mlogm).

28

a4
C”d‘J‘i

Figure 1: Triangulation process

3 Voronoi diagram approximation

Our algorithm can be used in order to approximate generalized planar Voronoi diagrams for
different site shapes (points, line-segments, curve-arc segments, ...) and different distance functions
(Euclidean metrics, convex distance functions, ...). The resulting approximation algorithm is very
general: not all the sites must be homogeneous in shape or have associated the same distance
function, and there are no restrictions on the connectivity of the Voronoi regions, which for a
single site may have several components, the degree of the Voronoi vertices or the dimensionality
of the bisectors.

The total cost of approximating the generalized Voronoi diagram of n sites inside a bounding-
box K, using m lines uniformly distributed on K, is O(mn logn + mlogm).

We have implemented both the general algorithm and its particularization to Voronoi diagrams.
An example of the results is shown in the next set of figures which has been obtained using convex
distance functions. Figure 2.a shows the diagram of two sites with non connected Voronoi regions.
Figure 2.b shows the diagram of two sites with a two dimensional bisector. The darkest regions
that appear in the image represent the two dimensional parts of the bisector. Figure 2.c shows
the diagram obtained using different site shapes and different distances: a point and a segment
with the Euclidean metric, a point with a quadrilateral as associated convex shape, and a point
with a non-unit circle as associated convex shape.

) Non connected regions.) Two dimensional bisector. (c) Different distances.

Figure 2: Conves distance

29

References

[1] F. Aurenhammer and R. Klein. Voronoi diagrams. In Handbook of Computational Geometry.
J.-R. Sack, J. Urrutia, editors.

[2] E. Althaus and K. Mehlhorn, Polynomial time TSP-based curve reconstruction. Proc. 11th
ACM-SIAM Symposium on Discrete Algorithms, pp 686-695, (2000).

[3] N. Amenta, M. Bern and D. Eppstein, The crust and the [-skeleton: combinatorial curve
reconstruction. Graphic Models and Image Processing 60, pp 125-135, (1998).

[4] D. Attali, r-regular shape reconstruction from unorganized points. Proc. 13th ACM Symposium
on Computational Geometry, pp 248-253, (1997).

[5] I. Boada, N. Coll and J.A. Sellares, Hierarchical Planar Voronoi Diagram Approximations.
Proc. 14th Canadian Conference on Computational Geometry 2002, pp 40-45,(2002).

[6] N. Coll and J.A. Sellareés, Planar Shape Reconstruction from Random Sections. Proc. 17th
European Workshop on Computational Geometry CG 2001 , pp 121-124, (2001).

[7] T.K. Dey and P. Kumar, A simple provable algorithm for curve reconstruction. Proc. 10th
ACM-SIAM Symposium on Discrete Algorithms, pp 893-894, (1999).

[8] T.K. Dey, K. Mehlhorn and E.A. Ramos, Curve Reconstruction: Connecting Dots with Good
Reason. Computational Geometry Theory Appl. 15, pp 229-244, (2000).

[9] T.K. Dey and R. Wenger, Reconstruction Curves with Sharp Corners. Proc. 16th ACM
Symposium on Computational Geometry, pp , (2000).

[10] H. Edelsbrunner, Shape reconstruction with the Delaunay complex. LATIN’98: Theoretical
Informatics, Lecture Notes in Computer Science, v. 1380, pp 119-132, (1998).

[11] H. Edelsbrunner, D.G. Kirkpatrick and R. Seidel, On the shape of a set of points in the plane.
IEEFE Trans. Information Theory 29, pp 71-78, (1983).

[12] K. Hoff, T. Culver, J. Keyser, M. Lin, D. Manocha, Fast Computation of Generalized Voronoi
Diagrams Using Graphics Hardware. Proc. SIGGRAPH’99, ACM Press, pp 277-286,(1999).

[13] J. Giesen, Curve reconstruction, the TSP, and Menger’s theorem on length. Proc. 15th ACM
Symposium on Computational Geometry, pp 207-216, (1999).

[14] C. Gold and J. Snoeyink, Crust and anti-crust: a one-step boundary and skeleton extraction
algorithm. Proc. 15th ACM Symposium on Computational Geometry, pp 189-196, (1999).

[15] M. Melkemi, A-shapes of a finite point set. Proc. 18th ACM Symposium on Computational
Geometry, pp 367-369, (1997).

[16] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu, Spatial Tessellations: Concepts and Appli-
cation of Voronoi Diagrams, John Wiley & Sons, (2000).

[17] L.A. Santalo, Geometric Probability, Society for Industrial and Applied Mathematics, (1976).

[18] M. Teichmann and S. Teller, Polygonal approximation of Voronoi diagrams of a set of triangles
in three dimensions. Technical Report 766, Laboratory of Computer science, MIT,(1997).

[19] J. Vleugels and M. Overmars, Approximating Generalized Voronoi Diagrams in Any Dimen-
sion. International Journal on Computational Geometry and Applications, 8:201-221,(1995).

30

Sweeping an Arrangement of Quadrics in 3D *

Bernard Mourrain Jean-Pierre Técourt Monique Teillaud

Abstract

1 Introduction

Arrangements are the underlying structure of many applications, especially in robot motion plan-
ning. They have been extensively studied in the literature (see [Hal97] for a survey).

The arrangement of a set of objects S in R? is the decomposition of R? into cells of dimensions
0,1,...,d induced by S. The topology of an arrangement is often quite complex, and the descrip-
tion of a given cell can be of non-constant size. Therefore, vertical decompositions are often used,
allowing to partition the space into simpler constant sized cells (for a complete bibliography, we
refer to [SHO02]). A sweep-based algorithm was followed in [dBGH96, SH02] to produce a vertical
decomposition of an arrangements of triangles in R3.

The manipulation of algebraic surfaces plays an important role in solid modeling. Geismann
et al. presented two methods to compute a given cell in an arrangement of quadrics [GHS01]. The
first method uses projection techniques based on resultants, while the second method uses solid
modeling techniques.

We propose here a sweeping algorithm to compute effectively the arrangement of a set of
quadrics in R3.

2 Overview

Let S = {Q;,i =1,...,n} be aset of n quadrics. We denote by (); both a quadric and its equation.
Let V@; be the gradient vector of ();. We assume that no quadric is a product of planes.

We choose a generic direction (say z) and we sweep S by a plane in this direction. Every
z-section of the arrangement is an arrangement of conics in the plane. We initialize the sweep at
some chosen value of z. Let us consider the different types of events where the topology of the
z-section is changing during the sweep.

a) Qi, =0,0,(Q4) =0,09,(Q,,) = 0: horizontal tangent plane.

More precisely, depending on the signature of @;,, three events can appear:

i (3,1), (1,3): . D)

*GALAAD, INRIA, BP 93, 06902 Sophia Antipolis cedex, FRANCE
{Bernard.Mourrain, Jean-Pierre.Tecourt, Monique.Teillaud}@sophia.inria.fr
http://www-sop.inria.fr/galaad/
This work is partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces)
http://www-sop.inria.fr/prisme/ECG/

31

N
i (2,2):

i, (2,1), (1,2):) . D)

b) @i, =0,Qi, = 0,(VQi;, AVQi,). = 0: horizontal tangent for the intersection curve between
Qh and Qiz-

~
~
~

We do not consider degenerate cases such as intersections of more than three quadrics at the same
point.

3 From cells to “trapezoids”

The first idea consists in characterizing each 2-dimensional cell of the arrangement of conics in
a section by sign conditions. For one or two conics, the sign conditions are determined by the
equations of the quadrics and the equations of lines depending on the quadrics. See [MTT02] for
more details.

In the case when cells are defined by more than 3 quadrics, the following picture shows that
two different cells (the two gray cells) can be characterized by exactly the same sign conditions.

To solve this issue, we choose to compute a “trapezoidal” decomposition of the arrangement
in the z-section, as explained in the following paragraph.

Trapezoids. We draw segments parallel to the y-axis. This is done in a very similar way as done
usually for the trapezoidal map in the case of a planar arrangement of line segments. A vertical
segment will be drawn through:

e intersection points between two conics

32

e points where the tangent to the conic is parallel to the y-axis.

We obtain “trapezoids” of constant size description: the boundary of each trapezoid consists into
two vertical walls, a ceiling and a floor. Both the ceiling and the floor are conic arcs.

Deciding whether a point lies in a trapezoid, reduces to compare the z-coordinates of the point
and the walls and then for a fixed z, to compute the sign of the conics defining the ceiling and the
floor or the sign of rational expressions formed on their coefficients.

The drawback is that maintaining the vertical decomposition introduces additional events that
have no meaning in the 3D arrangement, but the big advantage of this decomposition is that
all events described in Section 2, except events of type (a.i), can be easily detected during the
algorithm: each time a new trapezoid is created, we compute the z for which it disappears. All
the events of Section 2 are some of these events.

When a trapezoid disappears, the 2D arrangement needs to be updated: the trapezoid is
replaced by other trapezoids, and its neighbors are modified, too. Enumerating the different types
of trapezoids is quite easy, as well as the way they need to be updated, depending on the type of
event that cause them to disappear. Details are omitted in this abstract.

Ouly events of type (a.i) will be precomputed and sorted. When such an event is encountered,
a point location has to be performed. The decomposition into trapezoids allows to locate such a
point easily in practice, either in a naive way by testing all the trapezoids, or by walking along a
line.

3D decomposition. Another advantage of the trapezoidal decomposition is that it induces a
decomposition of the arrangement of quadrics in R® into simple regions, that are the regions
swept by the trapezoids. The decomposition we get with our method is not quite the same as the
so-called vertical decomposition [SA95].

We skip the discussion on the combinatorial complexity in this abstract. The data structures
used are roughly similar to the ones described in [SH02]. We chose to focus on algebraic aspects.

4 Algebraic aspects

The events of type (a.i) in Section 2 are precomputed by solving algebraic equations of degree 2,
and they are sorted.

Location in the trapezoidal map. As written above, deciding whether a point lies in a
trapezoid reduces to compute signs of rational expressions in the coefficients of the quadrics, and
to compare the z-coordinates of the point and the vertical walls. So, the point location for an
event of type (a.i) performs such evaluations of signs at points whose coordinates belong to an
algebraic extension of degree at most 2, and comparisons of degree 2 and 4 algebraic numbers.

Detecting and comparing new events. A trapezoid is defined by two vertical walls, a floor
and a ceiling. To predict how a trapezoid will disappear, we need to compute when its floor and
its ceiling collide, or when its vertical walls coincide.

The worst case, in terms of algebraic degree, is achieved by the events when the z-coordinate
of the intersection between two conics coincides with the z-coordinate of the intersection between
two other conics. This leads to the computation of points of intersection of 4 quadrics in a space of
dimension 4, whose coordinates lie in an algebraic extension of degree at most 16. The coordinates
of the intersection points are rational functions of these algebraic numbers.

33

In order to sort the events according to the z-direction, we have to determine the sign of the
difference of two algebraic numbers. In the worst case, we are interested in algebraic numbers of
degree 16 belonging to independent algebraic extensions of the initial field. So, the difference is in
an algebraic extension of degree 256.

Preliminary experimental results. These computations can be done in practice with the
SYNAPS library!. Let us consider the arrangement of the following 3 quadrics:

27227 + 96y + 1922 + 32y> + 64ya2 + 6427 — 571.22 — 142.4y — 252.82 4 323.64 = 0
12827 + 1152y% — 1024y 2z + 2562° — 144z — 886.4y + 358.42 + 220.12 = 0
6422 + 25632 + 12822 — 642 — 288y — 160z + 143 =0

We have considered the events corresponding to a change in the topology of the cross section (See

Section 2). The events corresponding to changes in the trapezoidal map are not computed in these

preliminary tests. An approximation of the events (a), (b), (c) is computed with the following

running times on a PC workstation (1686, 2.2 GHz, 256 M):

(a) 3 x 2 real solutions (0.01s).

(b) 3 x 8 = 24 complex solutions and 6 are real (0.06s).

(c) 8 complex solutions and 2 real (0.02s).

Then, the events are sorted according to the z-coordinate as follows:
(a) [0.825000,0.700000,0.287500]
(a) [0.562500,0.544649,0.359835]
(a) [0.500000,0.562500,0.448223]
(b) [0.498552,0.561349,0.448234]
(b) [0.687835,0.570199,0.508852]
(b) [0.677133,0.617014,0.519616]
(c) [0.676862,0.612181,0.521687]
(c) [0.638126,0.657542,0.685372]
(b) [0.534420,0.666721,0.719519]
(b) [0.662072,0.686211,0.723158]
(b) [0.627783,0.558545,0.776837]
(a) [0.500000,0.562500,0.801777]
(a) [0.562500,0.780351,0.890165]
(a) [0.675000,0.300000,0.912500]

References

[dBGH96] M. de Berg, Leonidas J. Guibas, and D. Halperin. Vertical decompositions for triangles in
3-space. Discrete Comput. Geom., 15:35-61, 1996.

[GHS01] N. Geismann, M. Hemmer, and E. Schomer. Computing a 3-dimensional cell in an arrangement
of quadrics: Exactly and actually! In Proc. 17th Annu. ACM Sympos. Comput. Geom., pages
264-273, 2001.

[Hal97] D. Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 21, pages 389—412. CRC Press LLC, Boca
Raton, FL, 1997.

[MTT02] Bernard Mourrain, Jean-Pierre Tecourt, and Monique Teillaud. Algebraic methods for dealing
with 3d implicit quadrics. Technical Report ECG-TR-182105-02, INRIA Sophia-Antipolis,
2002.

[SA95] Micha Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applica-
tions. Cambridge University Press, New York, 1995.

[SHO02] H. Shaul and D. Halperin. Improved construction of vertical decompositions of three-
dimensional arrangements. In Proc. 18th Annu. ACM Sympos. Comput. Geom., pages 283-292,
2002.

'http://wuw-sop.inria.fr/galaad/logiciels/synaps/

34

Parametric Voxel Geometry Control for
Digital Morphogenesis

Thomas Fischer
Spatial Information Architecture Laboratory
Royal Melbourne Institute of Technology
Melbourne, Australia
sdtom@polyu. edu. hk

Torben Fischer
Mathematische Fakultét
Georg-August-Universitdt Gottingen
Gottingen, Germany
torben.fischer@stud.uni-goettingen.de

1 Abstract

We discuss the extension of an experimental 3D voxel-automata system for generative (evolution-
ary developmental) design with means for parametric geometry control on the scale of single voxel
units. The objective of this extension is to allow the automata system to support the generation
of free form. Being the result of a longer-term interdisciplinary software development project,
the voxel automata system allows simulations of three-dimensional, computation-universal cellu-
lar structures and behaviours based on decentralised, massively parallel, programmable units. It
represents a kit of parts in which virtual form, programme and data structure are fused. From
this top-down perspective we demonstrate a number of geometric operations we have identified
and show some early results. We also give an outlook into more challenging future developments.

2 Zellkalkul

The software is named Zellkalkil in reference to Konrad Zuse’s Plankalkil and his early reflec-
tions on spatial calculation. It is designed to facilitate explorations of tempo-spatial mechanisms
of morphogenesis in cellular (voxel-based) architectural and design contexts such as theoretical
architectural design research [3] as well as in generative design teaching [2]. Zellkalkil differs from
classic cellular automata systems in terms of its programming logic as well as geometrically. Its
programming logic supports non-uniform high level coding. That is, different cells can be equipped
with individual code scripts. The scripting language used is an extended version of ECMAScript.
Besides its general control structures and data types, which are commonly known from other EC-
MAScript dialects such as JavaScript, our system also provides purpose-centered functions and
objects to support intercellular communication and developmental actions. These are partially
inspired by biological epigenetic processes (splitting, differentiating, moving, dying) and partially
intended to support generic actions (evaluating fixed identities, exchanging and modifying code
scripts etc.). The cellular voxel units are based on rhombo-dodecahedral geometry in close-packing
arrangement.

We prefer this topology, derived from face-centered cubic close-packing of spheres, over the
square or cubic arrangement of common 2D or 3D cellular automata systems since it allows equal
distances and relationships between all neighbouring cells (as discussed and exemplified in [4]).
Moreover, it bears a close resemblance to many natural cell tissues as identified and illustrated
early by [6] (see left of figure 1). The arrangement is equivalent to the isotropic vector matriz,
which, used for example to form so-called octet trusses, is of special relevance to architecture
and structural engineering (see [5], p.138 ff.). At the time of this writing, Zellkalkil supports 3D
rendering of this data structure in form of “solid” spheres and as rhombic dodecahedra. Vector

35

FPhy-totomie Tafl

__w.rw_ e (owe e pule

e 7278 TS

PR SO \
2. B

Fe T e T s
|
7z, |

\¢

Figure 1: Rhombo-dodecahedral cell geometry by [6] (left) and octet truss by [5] (right)

representation similar to the illustration on the right of figure 1 is planned.

3 Towards Supporting Free Form

We believe that Zellkalkil's geometry is more flexible than traditional square or cubic cellular
automata systems. However, from an architectural design viewpoint, this current spatial/cellular
automata structure still shows a particular shortcoming with respect to its formal expressive
capabilities. Geometrically, generated tissues are largely restrained to the system’s homogeneously
close-packed lattice structure and generate “jagged” forms only. Support of forms with smooth
surfaces, straight edges and so forth (or architecturally speaking: free form) is being developed at
this point and it is the purpose of this paper to explore possible solution strategies. Our interest is
to complement customary surface and solid modelling techniques with a different operational mode
that embraces developmental morphogenesis in form finding. Approaches that could in principle
qualify to allow the generation of free forms in such a way include:

1. Using large numbers of automata at a high resolution to approximate smooth 3D shapes. One
disadvantage of this approach is that smooth surfaces are not achieved, only approximated at
the cost of exponentially increasing memory consumption during shape generation. Formal
expression is moreover achieved primarily by means of additive composition and not by
parametric control of geometric relations. The usefulness of both parametric design principles
in combination has been discussed by [7].

2. “Skinning” of cell assemblies using curve fitting algorithms.

3. “Skinning” using cell centre points or cell attributes to control skin geometry, e.g. mapping
cell location or other cell-related data onto free curve control-points.

4. Mapping of data generated in Zellkalkil's automata structure onto secondary output ge-
ometries. This and the above two strategies however contradict the software’s intention to
provide a single unified geometric and data structure.

5. Parametric position control of cell polygon vertices. We will discuss this approach in most
of the remaining part of this paper.

6. Parametric cell sizes control. This appears to a highly interesting future extension. We have
however not yet been able to identify suitable operations and constraints for this approach
(see section 5.2).

36

7. Changing the distances between cell centres, i.e substituting the isotropic vector matrix by
an “anisotropic vector matrix”. This approach is a combination of the above two approaches
in which tissues are represented in form of vector trusses instead of as “solid” cells.

Our first approach towards parametric manipulation of the fourteen cell vertices involves the
following initial steps. First of all, the rhombic cell faces are triangulated in order to allow vertices
to move individually without affecting other vertex positions of the same cell while continuing to
allow tissues to remain close-packed without void or overlapping spaces. This triangulation is also
useful in facilitating the creation of triangle-based output file formats such as STL, which is useful
in producing stereo-lithographic rapid prototype models of generated form. For this purpose,
rhombic faces are simply split into two isosceles triangles. As a next step it is necessary to identify
the movement ranges of all vertices — the spaces or domains within which each vertex is allowed
to move while avoiding vertex eversions (which would describe unwanted inverse spaces). This
eversion problem would for instance occur if vertices {1} and {9} on the right of figure 4 were to
change their positions in such a way that {9} will be located above {1}; the cellular space between
both vertices would evert and result in an undefined space. A last step in this preliminary study
requires a suitable control mechanism, which will allow users to move vertices in intuitive ways
using scripting functions. Before discussing these control mechanisms, we will first proceed to
describe the identified vertex ranges.

To allow vertices to move freely without mutual eversion, the ranges must occupy the entire
tissue space while not overlapping and hence themselves allow close packing. The left of figure
4 shows a rhombic dodecahedron with faces numbered using Miller indices (a face identification
system adopted from the field of mineralogy), vertex numbers as used in Zellkalkul and two different
vertex types labeled ’a’ and ’'b’. Vertices between six adjacent cells (labeled ’a’) have octahedral
ranges while vertices between four adjacent cells (labeled ’'b’) have tetrahedral ranges. The side
length (or in Fuller’s terminology: the geodesic vector length) of both geometries is 1 (identical
to cell diameter). Figure 2 shows both types of these platonic shapes (left, octahedra are only
shown half) and (right) their ability to close-pack into cuboctahedral assemblies. The twelve cells
neighbouring the central cell are shown as wire frames in both images. By constraining vertices to
remain within their ranges, this topology guarantees that self-intersecting cell surfaces are avoided.

Figure 2: Cuboctahedral vertex range clusters defined by tetrahedral and octahedral (half shown)
vector matrices

Though the coboctahedral geometry shown in light grey on the right of figure 2 as such does
not allow space-filling close packing, this arrangement still occupies complete tissue spaces due to
partial overlapping. The reason for this overlapping is that ranges are associated with multiple
cells that have vertices in common.

37

4 User Interface

The user interface for vertex position control should be as simple, intuitive and yet as flexible
as possible. For this reason, from the user’s perspective, it does not distinguish between the
two different vertex types ’a’ and 'b’ even though they are internally processed in different ways.
We have decided to use a pressure model that allows users to control the pressure cells bear in
the direction of a given vertex. Figure 3 shows the force vectors with which adjacent cells can
manipulate both types of vertices. An advantage of using a pressure model for vertex position
control is that positions, as in Nature, result relatively from intercellular “negotiation” rather
than by unilaterally controlled, absolute positioning. A problem emerges when trying to move
a vertex between four cells (shown on the left of figure 3) by means of four pressure vectors in
caltrop arrangement (see inside tetrahedral range) since this does not allow the vertex to reach
any point within this range. We have solved this problem by modelling forces as negative pressure
(or: “tension”) rather than as “pressure”.

Figure 3: Force vectors within vertex ranges

The user interface is represented by the script interpreter associated with every cell. For
this purpose we have extended the scripting language specification with functions that allow the
identification of a vertex and a (negatively interpreted) pressure in the format setTension(v, p)
to set a pressure and in the format getTension(v) to acquire a pressure. The pressure parameter
is expressed as a byte value which allows relative pressure control at a resolution of 255 steps per
cell involved in a vertex positioning operation. The neutral default pressure of each vertex, as well
as the “atmospheric” pressure (relevant at tissue edges where vertices have no neighbours), is 127.
With this default value assigned to all vertices internally and to vertices of adjacent cells, a cell
assumes a normal rhombic dodecahedral shape. Other values result in “morphed” variations as
shown in image 5.

5 Outlook

This section discusses further system extensions that, within this ongoing project, are of interest
to us but for which we have not yet been able to identify appropriate algorithms and constraints.
Firstly, the fixed ranges described in the above section appear to be rather limiting compared to
the possibility of dynamic ranges. Secondly, flexible cell sizes would be of great value for generating
geometrically non-uniform tissues and structures.

38

{3

Range 1
Range 9

{9}

Figure 4: Miller face indices, vertex numbers and vertex layers (left), vertex ranges 1 and 9 in
front view (right)

5.1 Dynamic Vertex Ranges

The ranges (vertex domains) discussed above are rigidly defined as platonic tetrahedra and octa-
hedra. With these two types of ranges, vertices are not yet given the maximum possible ranges of
movement as shown in the illustration on the right of figure 4. Given that vertex {9} was to remain
its shown default position, the tetrahedral range of vertex {1} (double hatched) could potentially
be extended by as much as half of the range of vertex {9} (single hatched). The three-dimensional
interrelatedness of all vertices of a cell and its neighbours suggests a solution strategy that is based
on a process of recursive approximation. This approximation should make highly economic use of
physical machine resources. In tissues with large numbers of cells (tissues with up to 20,000 cells
have been generated and larger ones are likely to be generated in the future) such operations are
likely to jeopardize the system’s present interactive responsiveness. It was noted by [1] that in
the translation from idea to a product, it is in this responsiveness, where one of the key values of
parametric design lies.

5.2 Flexible Cell Sizes

Especially from a structural design point of view, a function to generate geometrically non-uniform
structures (cell tissues, octet trusses etc.) is enticing. This will require (again virtual pressure-
based) geometric control algorithms for variable automata diameters and consequently for variable
centre point locations. For such a function, however, a non-uniform 3D close packing system
will not be sufficient (an early investigation into this possibility was presented by [8]). In order
to maintain Zellkalkil's intercellular communication infrastructure, such a system needs to be
constrained in a way that always preserves the number of twelve cell neighbours. An alternative
solution could be based on intercellular communication facilities that are designed for variable
numbers of neighbours. Since this would however result not only in structurally chaotic forms but
also in a highly untidy organisation of the user scripting interface, a solution based on geometric
constraints would be preferable.

6 Acknowledgements

We gratefully acknowledge the support and advice from our colleagues and teachers at the School
of Design at the Hong Kong Polytechnic University, at the Spatial Information Architecture Lab-
oratory at the Royal Melbourne Institute of Technology and at the Faculty of Mathematics at the
University of Géttingen, in particular Prof. John Frazer, Prof. Mark Burry and Timothy Jachna.

39

2 AL Y
¢$6éCoy
o9t é

bbgoo

Figure 5: Array of parametrically morphed cells

References

[1] Mark C. Burry and Zolna Murray. Architectural design based on parametric variation and
associative geometry. In Challenges of the Future. Proceedings of the 15th eCAADe Conference,
pages 1-11, Osterreich Kunst und Kulturverlag, Vienna, Austria, 1997.

[2] Thomas Fischer. Computation-universal voxel automata as material for generative design edu-
cation. In Celestino Soddu et al., editor, The Proceedings of the 5th Conference and Ezhibition
on Generative Art 2002, pages 10.1-1.11, Generative Design Lab, DiAP, Politechnico di Milano
University, Milan, Italy, 2002.

[3] Thomas Fischer, Torben Fischer, and Cristiano Ceccato. Distributed agents for morphologic
and behavioral expression in cellular design systems. In George Proctor, editor, Thresholds.
Proceedings of the 2002 Conference of the Association for Computer Aided Design in Architec-
ture, pages 113-123, Department of Architecture, College of Environmental Design, California
State Polytechnic University, Pomona, Los Angeles, 2002.

[4] John H. Frazer. An Evolutionary Architecture. Architectural Association, London, 1995.

[5] R. Buckminster Fuller. Synergetics. Ezplorations in the Geometry of Thinking. Macmillan
Publishing, New York, 1975.

[6] D. G. Kieser. Phytotomie, oder Grundzige der Anatomie der Pflanzen. Crocker, Jena, 1815.

[7] Branco Kolarevic. Digital morphogenesis and computational architectures. In Jose Ripper
Kos, editor, The Proceedings of SIGraDi2000 - Construindo (n)o espacio digital (constructing
the digital Space), pages 98-103, Facultad de Arquitectura - Universidad Nacional de Mar del
Plata, Rio de Janeiro, Brazil, 2000.

[8] Gary Kong. Cellular automatas and ”stacking balls”. Technical dissertation forming part of
the Diploma of the Architectural Association, London, 1994.

40

Controlled Perturbation for Arrangements of Circles

*

Extended Abstract

Dan Halperin

Eran Leiserowitz

School of Computer Science

Tel Aviv University
{danha,leiserow }Qtau.ac.il

Abstract

Given a collection C of circles in the plane, we wish
to construct the arrangement A(C) (namely the sub-
division of the plane into vertices, edges and faces
induced by C) using floating point arithmetic. We
present an efficient scheme, controlled perturbation,
that perturbs the circles in C slightly to form a col-
lection C’, so that all the predicates that arise in the
construction of A(C') are computed accurately and
A(C") is degeneracy free.

We introduced controlled perturbation several
years ago, and already applied it to certain types of
arrangements. The major contribution of the cur-
rent work is the derivation of a good (small) res-
olution bound, that is, a bound on the minimum
separation of features of the arrangement that is re-
quired to guarantee that the predicates involved in
the construction can be safely computed with the
given (limited) precision arithmetic. A smaller res-
olution bound leads to smaller perturbation of the
original input.

We implemented the perturbation scheme and the
construction of the arrangement and we report on
experimental results.

1 Introduction

Computational geometry algorithms often assume
general position of the input and the “real RAM”
computation model. In the case of an arrangement
of circles, general position of the input means that
there is no outer or inner tangency between two cir-
cles, and that no three circles intersect at a common

*Work reported in this paper has been supported in part
by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2000-26473 (ECG - Ef-
fective Computational Geometry for Curves and Surfaces), by
The Israel Science Foundation founded by the Israel Academy
of Sciences and Humanities (Center for Geometric Comput-
ing and its Applications), and by the Hermann Minkowski —
Minerva Center for Geometry at Tel Aviv University.

41

Figure 1: Arrangement of circles with several degen-
eracies.

point (see Figure 1 for a degenerate arrangement). If
one wishes to use floating-point arithmetic (to achieve
fast running time), then even if the input 4s in general
position, round-off errors may cause the algorithm to
fail.

Thus, while building the arrangement in an incre-
mental fashion (that is, adding one circle at a time),
we will check if there is a potential degeneracy in-
duced by the newly added circle, and if so, we will
move that circle, so no degeneracies will occur. The
main idea is to carefully relocate the circle — move
the circle enough to avoid the degeneracies, but not
too much. Depending on the precision of the ma-
chine floating-point representation, and some prop-
erties of the arrangement to be handled, we deter-
mine a bound ¢ on the magnitude of the perturba-
tion, namely, we guarantee that any input circle will
not be moved by a distance greater than §.

Such a perturbation scheme, as was described
above, could be useful for the following reasons:
(i) floating-point arithmetic is usually supported by
hardware, making computations very fast, (ii) degen-
eracies are eliminated, thus an algorithm is made eas-
ier to analyze and implement, (iii) implementations
using exact arithmetic with floating-point filtering,
can be sped up, since the perturbation will cause the
predicates to be evaluated using the floating-point fil-
ters, thus avoiding the use of exact computation.

In many situations, the original input data is inac-

curate to begin with (due to, for example, measuring
errors or approximate modeling), so the damage in-
curred by perturbing slightly is negligible.

The predicates that arise in the construction of ar-
rangements of circles include expressions that contain
division and square-root operations. Those operation
are usually more difficult to handle robustly than ad-
dition, subtraction and multiplication.

The perturbation scheme that we follow, controlled
perturbation, was first presented in [6] as a method to
speed up molecular surface computation. The use of
exact computation turned out to be too slow for real
time manipulation, so a finite precision method was
needed. Controlled perturbation was devised to han-
dle the robustness issues caused by the use of finite
precision arithmetic, and to remove all the degenera-
cies. It was extended in [9], where it was applied
to arrangements of polyhedral surfaces. Those ar-
rangements require complex calculations in order to
achieve a good perturbation bound.

In [9] (as in [6]), the resolution bound (defined in
the next section) is assumed to be given. The reso-
lution bound is a key element in the scheme. In this
work we describe a method for obtaining good resolu-
tion bounds, which we anticipate will lead to a better
understanding of the method and will open the way
to applying the method in other settings.

Related work

Robustness and precision issues have been intensively
studied in Computational Geometry in recent years
[10].

A prevailing approach to overcoming robustness is-
sues in computational geometry is to use exact com-
putation [7, 13]. Such a strategy gives accurate re-
sults, and sometimes even allows the input to be de-
generate. When applied naively, exact computation
can considerably slow down the performance of a pro-
gram. One of the possible solutions is to use filtering
[2, 4, 11]. Typically, the filtering is done at the level
of the number type. That is, a predicate is evalu-
ated using exact computation only if it cannot be
correctly evaluated using finite precision arithmetic.
In [12], high-level filtering is done on arrangements
of conic arcs; a different approach for computing ar-
rangements of conic arcs is given in [1].

An alternative approach aims to compute robustly
with limited precision arithmetic, often by approxi-
mating or perturbing the geometric objects [3, 5, 8].
A variety of methods for handling imprecise geomet-
ric computations are surveyed in [10]. Controlled per-
turbation is a method of this type.

42

2 Overview of the Perturbation
Scheme

For an input circle C;, our algorithm will output a
copy C} with the same radius but with its center pos-
sibly perturbed. We denote by C; the collection of
circles {C1,...,C;}, and by C; the collection of cir-
cles {C1,...,C}}.

The input to our algorithm is the collection C = C,,
of n circles. Each circle C} is given by the coordinates
of its center X;,Y; and its radius R; (we assume that
all the input parameters are representable as floating-
point numbers with the given precision). The input
consists of two additional parameters: (i) the ma-
chine precision p, namely the length of the mantissa
in the floating-point representation, and (ii) an upper
bound on the absolute value of each input number
X;,Y; and R;. The perturbation scheme transforms
the set C into the set C' = C),.

We will build the arrangement in an incremental
fashion (that is, adding one circle at a time), and
if there is a potential degeneracy while adding the
current circle, we will perturb it, so no degeneracies
will occur. We next describe the two key parameters
that govern the perturbation scheme, the resolution
bound and the perturbation bound.

Resolution bound

A degeneracy occurs when a predicate evaluates to
zero. The goal of the perturbation is to cause all
the values of all the predicate expressions (that arise
during the construction of the arrangement of the cir-
cles) to become significantly non-zero, namely to be
sufficiently far away from zero so that our limited pre-
cision arithmetic could enable us to safely determine
whether they are positive or negative.

The degeneracies that arise in arrangement of cir-
cles have a natural geometric characterization as in-
cidences. For example, in outer tangency, two circles
intersect in a single point. In our scheme we trans-
form the requirement that the predicates will evaluate
to sufficiently-far-from-zero values into a geometric
distance requirement.

This is a crucial aspect of the scheme: the trans-
formation of the non-degeneracy requirement into a
separation distance. We will call the bound on the
minimum required separation distance, the resolution
bound and denote it by . Deriving a good resolution
bound is a central innovation in this work. Previ-
ously (e.g., [6]) we assumed that these bounds were
given, and in our experiments we used crude (high)
bounds. The bound on ¢ depends on the size of the
input numbers (center coordinates and radii) and the
machine precision. It is independent of the number

n of input circles.

Perturbation bound

Suppose indeed that ¢ is the resolution bound for all
the possible degeneracies in the case of an arrange-
ment of circles for a given machine precision. When
we consider the current circle C; to be added, it could
induce many degeneracies with the circles in C|_,.
Just moving it by € away from one degeneracy may
cause it to come closer to other degeneracies. This is
why we use a second bound J, the perturbation bound.
The bound ¢ depends on e, on the maximum radius
of a circle in C, and on a density parameter k of the
input which bounds the number of circles that are in
the neighborhood of any given circle and may effect
it during the process, k < n (a formal definition of k
is given in the full version of the paper; in the worst
case k = n).

We say that a point ¢ is a valid placement for the
center of the currently handled circle C;, if when
moved to ¢ this circle will not induce any degener-
acy with any of the circles in C;_,. The bound ¢ is
computed such that inside the disc D of radius § cen-
tered at the original center of C;, at least half the
points (constituting half of the area of the disc) will
be valid placements for the circle. This means that if
we choose a point uniformly at random inside D to
relocate the center of the current circle, it will be a
valid placement with probability at least 3.

After the perturbation, the arrangement A(C') is
degeneracy free. Moreover, A(C') can be robustly
constructed with the given machine precision.!

An alternative view of our perturbation scheme is
as follows. We look to move the centers of the input
circles slightly from their original placement such that
when constructing the arrangement A(C') while using
a fixed precision (floating-point) filter, the filter will
always succeed and we will never need to resort to
higher precision or exact computation.

The details of how to compute the resolution bound
and the perturbation bound are given in the full ver-
sion of this paper.

We quote the result summarizing the resources re-
quired by the algorithm.

Theorem 1 Given a collection C of n circles, the
perturbation algorithm which allows the construc-
tion of the arrangement A(C') runs in total expected
O(n?logn) time.

!The perturbation algorithm should not be confused with
the actual construction of the arrangement. It is only a pre-
processing stage. However, it is convenient to combine the
perturbation with an incremental construction of the arrange-
ment.

43

3 Defining the Predicates and
Determining a Worst Case ¢

As was already stated, the main contribution of this
work is in computing the resolution bound. To do so,
we examine the possible degeneracies, and find the &
required to remove them once we are given the pre-
cision of the underlying arithmetic. In other words,
we determine for each degeneracy a distance € such
that if a pair of features related to this degeneracy
are at least € apart, then we can safely evaluate the
corresponding predicate with the given precision. For
each degeneracy we present the appropriate predicate
and also compute the worst case €. Using this € we
then compute the value of §, the maximum distance
of a perturbed circle C; from its original position, as
described in the previous section.

Denote a predicate which takes m arguments and
determines the sign of an expression by Pr, =
sign(E(z1,...,%y)). Denote by Pr, the predi-
cate which takes m arguments and returns true iff
E(zy,...,z,) > 0. We define a degeneracy when
E=0.

Since we are using floating-point arithmetic, we
cannot compute E exactly. Instead, we are only com-
puting an approximation E of E. We also compute
a bound B > 0 on the maximum difference between
FE and the exact value E, namely, |E — E| < B or
E—B< E<E+B. Thus, if E > B then E > 0,
and if £ < —B then E < 0. The bound B is com-
puted according to the method given in [2].

When we add C; to the collection C;_,, if for all the
predicates involving C; (regarding all the circles that
were already inserted), |E| > B, then C; is in a valid
place, and there is no need to perturb it. If there
exists a predicate P, for which |[E| < B, we define
such a configuration as a potential degeneracy, and
we need to perturb C;. For each predicate, we need
to understand the geometric meaning, of |E| > B, so
it will be reflected in & and then in 6. The details are
given in the full version of the paper.

4 Experimental Results

In this section we report on experimental results with
our implementation of the perturbation scheme that
was described above. We implemented the perturba-
tion scheme as a set of C+4 classes. We also im-
plemented the DCEL (Doubly Connected Edge List)
construction with a simple point-location mechanism.

We have tested our program on four input sets
(see Figure 2): grid, flower, rand_sparse, and
rand_dense. For rand_sparse and rand_dense, all
the input parameters are given as integers (to “pro-
mote” degeneracies). The properties of each input set

are given in Table 1. The results of the perturbation
and running times for those inputs are give in Table 2
(with the IEEE double number type). The tests have
been performed on an Intel Pentium III 1 GHz ma-
chine with 2 GB RAM, operating on a Redhat 7.1
using gce 3.03.

M

140
100
100
100

Name n R

320 | 10
40 | 100
40 | 20
100 | 49

grid
flower
rand_sparse

rand_dense

Table 1: n denotes the number of circles, R denotes
the maximum radius and M is the maximum input
size (center coordinates).

N

¢
@

%
)
)
%)
%
%
(X

KD
,(43
&

0
(2&:
(2@

R
&)

¢
S
"“I Q
ANA
DR
o
X

%

9

DA D%
N

®;
»;
X
®;
e
e

9
9
9
9
9
9

ZA\N
N

R)
®.
AN

Qy
@
P,
!

(>

N

9
oo

0

X

®
o
X
2

@,

PSRN

G
X
NAL

NS
NN .v’;,’;’,'

N

0
A

ZA\N

Y
IQ\
AN

J
N

77

ﬁ\
Y
X
=

&
&
7\

N
%

N

TR

/ WAL
“:‘é;‘\\\\\\\\w/m

N
55
o
7
22

==

=

Y)t
\¢
3¢
25

N A
CINCY
v
ANY
Q’\
Y
&
N
28
NA
X0
=
4
AT
2

0
;
2

2>
<>
S

ZA\N
A
3
0
i

Z <>
":
N
N
W
N

SSSo

===
L2
===

=
%

X
35
0
%
N
Q)
o
&

7
/
59%
e e

.

X
s

7
N

7

==

@
’
@
'®
@

(D
2
AL
2
e*g:
0

o

KID

=7

777

.
”’I'

71
'
gl

X
@’
@’

(&

%
{3

ke
8
®
7,

®)
SABN

*
’\l
A\
l"\l
X
NAL
¢
NAL
N7

54

N
5
NA
5e
A

G

N

X

A
&
A3
l‘\
A3
\ @
I&\
%

&

name avg. max. | p_time | t_time
grid 0.1319 | 0.7275 0.386 0.404
flower 0.9783 | 3.5470 0.274 0.28
rand_sparse | 0.0158 | 0.0172 0.004 0.006
rand_dense | 0.0382 | 0.3860 0.22 0.23

Figure 2: (a) A grid of 320 circles, which involves

Table 2: Avg. denotes the average perturbation
size, max. denotes the maximum perturbation size,
p_time denotes the time of the perturbation (in sec-
onds) and t_time denotes the total (perturbation and
DCEL construction) time (in seconds). The given re-
sults are from averaging the results of 5 tests for each
input.

References

[1] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert,
K. Mehlhorn, and E. Schémer. A computational ba-
sis for conic arcs and Boolean operations on conic
polygons. In Proc. ESA 2002, pages 174-186.
Springer-Verlag, 2002.

[2] C. Burnikel, S. Funke, and M. Seel. Exact geo-
metric computation using cascading. International
Journal of Computational Geometry and Applica-
tions (IJCGA), 11(3):245-266, 2001.

[3] S. Fortune and V. Milenkovic. Numerical stability of
algorithms for line arrangements. In Proc. 7th ACM
Sympos. Comput. Geom., pages 334-341, June 1991.

[4] S. Fortune and C. J. Van Wyk. Static analysis yields
efficient exact integer arithmetic for computational
geometry. ACM Trans. Graph., 15(3):223-248, July
1996.

[5] L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon ge-
ometry: building robust algorithms from imprecise
computations. In Proc. 5th ACM Sympos. Comput.
Geom., pages 208-217, 1989.

many inner and outer tangencies. (b) A “flower” com-
posed of 40 circles, all intersecting in a common point.
(c) A collection of 40 random circles. (d) A collection
of 100 random circles.

[6] D. Halperin and C. R. Shelton. A perturbation
scheme for spherical arrangements with application
to molecular modeling. Comput. Geom. Theory
Appl., 10:273-287, 1998.

[7] K. Melhorn and S. Naher. The LEDA Platform
of Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[8] V. J. Milenkovic. Verifiable implementations of geo-
metric algorithms using finite, precision arithmetic.
Artif. Intell., 37:377-401, 1988.

[9] S. Raab. Controlled perturbation for arrangements
of polyhedral surfaces with application to swept vol-
umes. In Proc. 15th ACM Symposium on Computa-
tional Geometry, pages 163-172, 1999.

S. Schirra. Robustness and precision issues in ge-
ometric computation. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages
597-632. Elsevier Science Publishers B.V. North-
Holland, Amsterdam, 2000.

J. Shewchuk. Adaptive robust floating-point arith-
metic and fast robust geometric predicates. Discrete
Comput. Geom., 18:305-363, 1997.

R. Wein. High level filtering for arrangements of
conic arcs. In Proc. ESA 2002, pages 884-895.
Springer-Verlag, 2002.

[10]

[11]

[12]

C. K. Yap. Towards exact geometric computation.
Comput. Geom. Theory Appl., 7(1):3-23, 1997.

[13]

44

Vertex Cover and Connected Guard Set

PAWEL ZYLINSKI

Institute of Mathematics
University of Gdarisk
80-392 Gdarisk, Poland

e-mail: pz@math.univ.gda.pl

The art gallery problem asks how many guards are sufficient to see every point of the interior of
an n-vertex simple polygon. The guard is a stationary point who can see any point that can be
connected to it with a line segment within the polygon. A collection of guards S = {g1,...,gx } is
said to cover the polygon P if every point « € P can be seen by some guard g € S.

For a guard set S we define the wisibility graph VG(S) as follows: the vertex set is S and
two vertices vy, v9 are adjacent if the line segment with endpoints v; and v, is a subset of P, i.e.
10z C P. Next, the guard set S is said to be cooperative (connected) if the graph VG(S) is
connected.

The concept of cooperative guards was proposed by Liaw, Huang and Lee [5]. They established
that The Minimum Cooperative Guards Problem for simple polygons is NP-hard, but for spiral and
2-spiral polygons this problem can be solved in linear time [5]. For k-spiral polygons the minimum
number of cooperative guards is at most N, the total number of reflex vertices in the k-spiral
polygon [3]. The cooperative guards problem for general simple polygons has been completely
settled by Hernandez-Pefialver, proving that | %] — 1 cooperative guards are always sufficient and
occasionally necessary to guard a polygon of n vertices [4].

The diagonal graph Gp of any triangulation of an n-vertex polygon P is a graph obtained only
from n — 3 internal diagonals of the triangulation: the edges correspond to the diagonals and the
vertices correspond to all endpoints of diagonals. Herein we discuss the relation between a vertex
cover of a diagonal graph and a connected vertex guard set in a polygon (guards are restricted to
be located only at the vertices of the polygon): we show that any set S is a vertex cover of Gp if
and only if S forms a connected vertex guard set in P.

1 Diagonal graphs

Lemma 1.1 Let P, T and Gp be a simple n-vertex polygon (n > 4), its arbitrary triangulation,
and the diagonal graph of triangulation T, respectively. Then Gp is connected. (|

Let us recall that a graph is outerplanar if it can be embedded in the plane so that all of its
vertices lie on the exterior face.

Lemma 1.2 Let m be the number of edges of a connected outerplanar graph G. Then there exists
a vertex cover of cardinality at most | ™ | O

Let P be a polygon of n vertices. Any of its diagonal graphs has n — 3 edges, and, of course,
it is outerplanar. By Lemma 1.1 and Lemma 1.2 we get the following:

Corollary 1.3 Let Gp be the diagonal graph of a triangulation of an n-vertex polygon. Then
there exists a vertex cover of cardinality at most L”T_QJ O

45

2 Vertex cover vs. connected guard set

A triangulation graph G of an n-vertex simple polygon P is a graph obtained by triangulation P
with internal diagonals between vertices: the vertices of G correspond to the n vertices of P, and
the edges correspond to the n edges of P and n — 3 diagonals.

A wvertex guard in Gr is a single vertex of Gr. A set of guards S = {g1,...,9x} is said to
dominate G if every triangular face of Gr has at least one of its vertices assigned as a guard
(€ S). Finally, the collection of guards S = {g1,...,9xr} is said to be connected if for any two
guards g;,g; € S there exists a path p = (gs,p1,...,m,9;) in triangulation graph G that all
pt € S, fort =1,...,1. Guards in graph Gt are called combinatorial connected guards to distin-
guish them from the geometric connected guards introduced earlier. The reason for introducing
triangulation graphs is that a proof of sufficiency of a certain number of combinatorial connected
guards establishes the sufficiency of the same number of geometric connected guards in a polygon.

Lemma 2.1 [4] Let P be a simple polygon, and Gy be one of its triangulation graphs. If Gy can
be dominated by k combinatorial connected guards, then P can be covered by k geometric connected
vertex guards. |

The main use of diagonal graphs is the following result.

Theorem 2.2 Let T, Gy, Gp be any triangulation of a simple polygon, a triangulation graph of
T and the diagonal graph of T, respectively. If C = {g1,...,gr} is a vertex cover of graph Gp,
then C is a connected guard set in G. O

We note in passing that Theorem 2.2 holds also for iff:

Theorem 2.3 Let T, Gr, Gp be any triangulation of a simple polygon, a triangulation graph of
T and the diagonal graph of T', respectively. A connected guard set S in G is a vertex cover of
diagonal graph Gp. O

Corollary 1.3 and Theorem 2.2 lead immediately to the following:

Corollary 2.4 L”szj connected guards are sometimes necessary and always sufficient to cover
any polygon of n vertices. (I

3 Final remarks

The idea of the proof of the sufficiency of L”T’Zj—bound leads immediately to a linear approximation
algorithm AD for finding any connected guard set for a polygon P (guards will be located at
vertices):

(1) triangulate P; (in O(n) steps [2])
(2) find any minimum vertex cover of the diagonal graph Gp. (in O(n) steps [8])

Nevertheless, this algorithm can be arbitrarily bad.
Let Sap(P) and Sopr(P) denote the number of connected guards obtained by algorithm AD,
and the minimal number of connected guards that cover P, respectively. It is natural to ask about:

lim max M
n—oo g, Sopr(P)’

that is how the obtained result can differ from the optimal solution.
Consider a polygon P of 4k + 2 vertices, its triangulation T', and its corresponding diagonal
graph G p shown in Fig. 1. It is clear, that any minimal vertex cover of Gp is of cardinality k + 1,

46

Fig. 1. A star polygon of 4k + 2 vertices that requires only 2 connected vertex guards, (a) its
triangulation T', (b) the minimum vertex cover of Gp is of cardinality k + 1.

and as P is a star polygon with one of its vertices in the kernel, it can be guarded only by two
connected vertex guards. Thus:

lim max 7SAD(GD) =
n—oo g, Sopr(P)

We recall that The Minimum Connected Guard Problem for simple polygons was shown to be

NP-hard [5].

References

1

2]

13l

[4]

[5]

[6]

7]
18]

19]

V. Chvatal. A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B 18, 39-41
(1975).

B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5),
485-524 (1991).

J.S. Deogun, S.T. Sarasamma. On the minimum cooperative guard problem. J. Combin.
Math. Combin. Comput. 22, 161-182 (1996).

G. Hernandez-Penalver. Controlling guards. Proc. of Sizth Canadian Conference on Compu-
tational Geometry, 387-392 (1994).

B-C. Liaw, N.F. Huang, R.C.T. Lee. The minimum cooperative guards problem on k-spiral
polygons. Proc. of the Fifth Canadian Conference on Computational Geometry, 97-101 (1993).

J. O’'Rourke. Galleries need fewer mobile guards: a variation to Chvatéatal’s Theorem. Ge-
ometriae Dedicata 14, 273-283 (1983).

J. O’Rourke. Art Gallery Theorems and Algorithms, Oxford University Press (1987).

I.G. Tollis. On finding a minimum vertex cover of a series-parallel graph. Appl. Math. Lett.
2, no. 3, 305-309 (1989).

J. Urrutia. Art Gallery and Illumination Problems. Handbook on Computational Geometry,
Elsevier Science, Amsterdam (2000).

47

48

An optimal competitive on-line algorithm for the minimal
clique cover problem in interval and circular-arc graphs

Jerzy W. Jaromczyk
Department of Computer
Science
University of Kentucky
Lexington, KY 40506, USA

jurek@cs.uky.edu

ABSTRACT

We define and study an on-line version of the shooter prob-
lem O-LSP. In the standard off-line version the problem is:
given a finite set S of line segments in R? and a point p find
the smallest number of half-lines that start at p and inter-
sect all the segments in S. In our O-LSP on-line version
the segments S = {p1,...,pn} are given one by one and the
selection of the suitable intersecting half-line for p; must be
done, and cannot be changed, immediately after seeing p;.
In this process we can use a half-line that already intersects
some of the segments So in {p1,...,pi—1} by possibly rotat-
ing this half-line in such a way that it keeps intersecting
So. Via the well-know relation between the shooter problem
and circular-arc graphs we reduce it to the on-line Minimal
Clique Cover problem (MCC) for the classes of interval and
circular-arc graphs. Specifically, we are interested in the
competitiveness of on-line algorithms for MCC. An on-line
algorithm A is cp-competitive for the family F' of graphs if
for all G € F, A(G) < ¢rOPT(G) + br, cr and br con-
stants, where A(G) is the solution found by algorithm A for
graph G and OPT(Q) is the optimal (off-line) solution. We
analyze on-line algorithms and two simple (and seemingly
similar) greedy strategies (called LGR and EGR) for MCC
(and O-LSP) and show both upper and lower bounds on
their competitiveness ratio cr. We demonstrate that:

e cr > 2, for any on-line algorithm;

e cr is unbounded for LGR; hence LG R is not compet-
itive.

o cr =2 for EGR; hence EGR is optimal.

Keywords

Shooting Problem, On-line algorithms, Interval Graphs, Circular-

Arc Graphs

Andrzej Pezarski
Institute of Computer Science
Jagiellonian University
Krakow, Poland

pezarski@ii.uj.edu.pl

49

Maciej Slusarek
Institute of Computer Science
Jagiellonian University
Krakow, Poland

slusarek @ii.uj.edu.pl

1. DEFINITIONS AND BACKGROUND

An interval graph G is the intersection graph of a family
of closed intervals in the real line. Similarly, a circular-arc
graph is the intersection graph of a family of closed arcs
in a circle. Each vertex v of G corresponds to an interval
(an arc, respectively) and the collection of intervals (arcs,
respectively) is the representation of G. Interval graphs are
often defined in terms of posets as each of them is the co-
comparability graph of a set of closed intervals; see [F85].
Note that interval graphs form a proper subclass of circular-
arc graphs. The class of interval and circular-arc graphs
have been intensively studied, in particular because of their
practical applications (e.g., in memory allocation and in or-
ganizing records in databases [BL76]).

The clique cover for graph G is defined as the family of
subgraphs of G such that each subgraph is a clique and
their union is G. Note that subgraphs in the clique cover
do not need to be vertex-disjoint. The clique cover of the
smallest cardinality #(G) is called a minimal clique cover
and the algorithmic problem of finding it will be denoted in
this paper by MCC.

Specifically, we study on-line algorithms for MCC and our
motivations stem from the shooting problem studied in com-
putational geometry; see [ChN99,JK02]. The problem can
be stated as follows: given a finite set S of line segments in
R? and a point p find the smallest cardinality set of half-
lines that start at p and intersect (stab) all the segments
in S. After projecting the segments onto a disc centered at
p, the problem corresponds to stabbing arcs; see Figure 1.
The on-line version of MCC means that the segments are
given one-by-one is some order and the shooter must decide
immediately after seeing this segment which of the current
shooting directions or a new one will be used; after the deci-
sion has been made the shots cannot be reassigned. Clearly,
segments intersected by the same shot form a clique in the
corresponding circular-arc graph and the smallest number
of such cliques determines the smallest number of shots. An
important theorem, due to Hsu (Theorem 3.2, [HT91]), re-
lates the size of the MCC in circular-arc graphs G with the
maximal independent set size a(G).

THEOREM 1.1. [HT91] If G is not a clique then 8(G) =
a(Q) or (G) = a(G) + 1.

Figure 1: An instance of the shooting problem.

MCC problem for graphs G is clearly related to the graph-
coloring problem where the objective is to find the minimum
integer k, called the chromatic number x(G), and a function
f: V(G) = {1,2,...k} such that no edge e = (u,v) has

f(u) = f(v). For interval graphs G, we have 6(G) = x(G),
where (G) is the graph complement of G. There is a number
of strong results related to on-line coloring algorithms for in-
terval and circular-arc graphs; see e.g. [K98,KQ95,589,595].
Since the complements of interval graphs are not, in gen-
eral, interval graphs, the above relation does not help to
solve our MCC problem via coloring. Similarly, results for

graph-coloring do not help with the circular-arc graphs.

2. ON-LINE mcc PROBLEM

An on-line presentation G< of a graph G is a linear order <
of vertices V of G(V, E). G is the on-line graph induced by
the first ¢ elements {v1,...,v;} of V in < order. The on-line
minimum clique cover (on-line MCC in short) is specified as
follows:

An algorithm A is an on-line algorithm for the minimum
clique cover of an on-line graph G, if given a presentation
G< with the order V = {v1,...,v,} it computes a sequence
of positive integers A(v;),7 = 1,...,n, where A(v;) is the
name of a clique that covers v;, in such a way, that for each
i, A(v;) depends exclusively on G;<.

In other words, the vertices are input one by one, and the
number of the clique that covers v; is established irrevoca-
bly after reading vi,...,v;, together with their adjacency
structure.

The quality of on-line algorithms is measured by the compet-
itive ratio. An on-line algorithm A is cp-competitive for the
family F of graphs if for all G € F, A(G) < crOPT(G)+br,
cr and br constants, where A(G) is the solution found by
algorithm A for graph G and OPT(G) is the optimal (off-
line) solution. In case of the Minimum Clique Cover, we
have OPT(G) = 0(G).

We are looking for competitive algorithms for the on-line
MCC problem on interval and circular arc-graphs. For the
sake of simplicity we describe all results for the class of inter-

50

V3

Figure 2: Shots and their ranges: A(vi) = A(vi) =1,
ra[l] = [3,4], A(v2) = A(va) = 2, ra[2] = r3[2] = [7,9].

val graphs, mentioning the differences for circular-arc graphs
whenever necessary.

The main assumption for our considerations is that the input
graph is given already in its interval (respectively: circular-
arc) representation, i.e., v; = [p;,¢;] — a closed interval on
the real line or a closed arc on a circle. This is exactly the
input to O-LSP. The letter s, possibly with subscripts, will
be used to denote shots (i.e., the ordinal numbers for the
cliques). If A is an on-line clique cover algorithm then by
A(v) we denote the shot that covers v, the one that is as-
signed immediately after reading v. Observe that in general
when the algorithm ends there can be also other shots that
stab v.

For an interval graph a shot (i.e., a clique) can be depicted
as a vertical line and a set of segments stabbed with this
line. Usually the choice of such a line for a fixed clique in an
interval graph is not unique. To make our reasoning precise
we introduce the notion of the shot’s range; see Figure 2.

DEFINITION 2.1. Assume that s is a shot number that is
already in use after processing G. The range Tm[s] of s
at phase m is defined as follows: rn[s] = {v; | 1 < j <
m, A(vj) = s}.

Observe that for each shot s in use we have rp[s] # 0.
The ranges of shots potentially decrease in course of the
computation, rp41[s] C rmfs],m=1,...,n —1.

3. GREEDY ALGORITHMS

DerFiNITION 3.1. Algorithm A for the on-line MCC prob-
lem is greedy if for each verter v; in G<, upon assigning
A(v;), if there is already a shot range that intersects v; then
A(v;) 1s not set to a new shot number.

In other words, a greedy strategy always tries to assign shots
already in use, if at all possible. Note that this rule alone
may lead to ambiguous decisions. In the following exam-
ple: v1 = [1,3], v2 = [4,6], vs = [2,5] a greedy algorithm
yields A(v1) = 1, A(v2) = 2, and A(vs) can be either 1 or
2. Despite this ambiguity we can formulate an easy yet very
important property that turns out to be useful for the sub-
sequent considerations.

Vi

Vo
| |
v ‘ ‘ v ‘
3 5
| V4 | Ve
[[
| |
| ' | | ' |
E— e e E——
R R R R

Figure 3: Tree of intervals

LEmmA 3.1. If s1 # s2 are two shots already in use by a
greedy algorithm A at the moment m then rp[s1]Nrm[s2] =

0.

Proor: The lemma follows easily from the monotonicity
of shots’ ranges. O

We are able to formulate and prove the first of our main
results.

THEOREM 3.1. For any € > 0 there does not exist a (2 —
€)-competitive algorithm (of any kind) that solves the on-line
MCC problem.

Proor: We are going to build a strategy for an adversary
who plays against a MCC on-line algorithm A. In order to
clear away the influence of the additive constant bp that
stands in the definition of the competitiveness we have to
prove that for any ¢ > 0 and m > 0 the adversary can
impose A(G)/0(G) > 2 — € for some interval graph G such
that (G) > m.

For any natural number k we construct an appropriate se-
quence of n = 2¥*! —2 intervals. The construction for k = 3
is depicted in Figure 3. The adversary uses this sequence,
perhaps several times, according to the following rules:

1. If all A’s clique assignments adhere to the greedy prin-
ciple (as shown in Figure 3) this part of the game
ends after exhausting the whole sequence. We obtain
AG) = n/2 = 2 — 1 and 9(G) = a(G) = 271
Hence A(G)/6(G) can be made arbitrarily close to 2
by a suitable choice of k.

2. If at some moment algorithm A defines two new cliques
for two consecutive intervals wva;_1, v2;, i = 1,2,...
(that is, A does not adhere to the greedy principle)
complete the current level of the tree and finish this
part of the game. Let j — 2 be the index of the last
vertex on this level, i.e. j be the closest power of two
greater than 2i. Then the results are: 8(G) = j/4,
and, summing up the last level separately with the
remaining ones, A(G) > (j/4+ 1)+ (j/4—-1) = j/2,
which makes the ratio A(G)/6(G) greater or equal 2.

51

Va3

Figure 4: Intervals for LGR.

The whole game is constructed by repeating the above strat-
egy in separate areas (intervals) of the real line sufficiently
many times in order to obtain the required size of the graph
6(G) > m. |

The ambiguity of the clique assignment by the greedy prop-
erty can be resolved in various ways. We analyze two most
intuitive strategies, leftmost greedy LGR and earliest greedy
EGR.

The LGR strategy has a clear geometrical flavor, and it
works according to the following greedy principle: From
the available shots ranges that intersect the current inter-
val choose the leftmost one. Since the ranges of any pair of
shots are disjoint (see Lemma 3.1) this assignment is well
defined.

The EGR works similarly: it selects the earliest available
shot instead of the leftmost one. In this regard it resembles
classical First-Fit packing algorithms.

Despite some similarity of the two variants of the greedy
approach there exists a broad gap between their efficiency.
The former turns out to be non-competitive while the latter
is optimal.

THEOREM 3.2. LGR is not competitive.

ProoOF: For any k > 0 we construct a sequence of 4k — 2
intervals, as depicted in Figure 4. It is easy to see that for the
graph G generated by these intervals we have LGR(G) = 2k
and (G) = 2 — just a shot along left ends of odd-numbered
intervals and another one through the right ends of the even
numbered intervals suffice. Hence theratio LGR(G)/6(G) =
k which is arbitrarily large. O

Below we present two lemmas that describe some interesting
properties of EGR strategy. Let S be an independent set of
maximum cardinality |S| = «(G). We may assume that no
interval from V' is properly contained in any of the intervals
from S; such a set .S exists and can be effectively constructed

S S
| |
v | |
al |
| | Var
| |
| |
v | |
bl | |
[! Vix
| |
| |
1 | |
| |
L L T
(S, 1[Sp]

Figure 5: Ranges included in intervals.

for a given interval graph [HT91]. Denote the last property
of S by II. Recall that the size of S states a lower bound to
the efficiency of MCC algorithms.

LEMMA 3.2. At any stage j of computation, for anyv € S
there exists at most one shot s such that r;j[s] is properly
included in v.

PROOF: Assume the contrary: at some moment j there
are shots s., s, whose ranges are properly included in some
interval v € S. From Lemma 3.1 it follows that without
loss of generality the situation can be depicted as in Figure
5. We have EGR(vq;) = A(vq,) = sq and EGR(v,) =
EGR(vy,) = sp. Observe that property II implies that all
the four intervals considered extend beyond the respective
endpoints of v.

Let s, be the shot that has been introduced earlier of the
two. Then s, could not be assigned to vy, since at the time
vy, was considered by the algorithm, shot s, had already
been in use. A symmetric argument applies to the case
that s, is earlier than s, and interval v,,, showing that the
initial assumption is false. This completes the proof of the
lemma. O

By replacing property II with the maximality of the inde-
pendent set S, a similar argument can be used to prove:

LeMMA 3.3. Let vy = [p1, qi] and v, = [pr,q.] be two ad-
jacent intervals from the set S such that q@ < pr, and let
I = [q,pr] be the gap between them. At any stage j of com-
putation there exists at most one shot s such that rj[s] is
properly included in I.

From the above two lemmas we derive that the number of
shots whose ranges are fully included either in some interval
from set S or in some gap between intervals equals 2a(G) +
1, which is sufficient to prove that EGR is 4-competitive.
However, we can show a stronger result.

THEOREM 3.3. EGR(G) < 20(G) + 1.

52

PROOF: Assume that the output of algorithm EGR on
an interval graph presentation G< is given. Order all of
the shots from left to right and assign to them new ordinal
numbers 1 through m = EGR(G). Since the ranges of the
shots are disjoint this assignment is well defined.

Fix 7 € {1,...,Lm/2J} and let T[2i — 1] = [a2i71,b21‘71],
r[2i] = [a2i, b2;] be the ranges of two adjacent shots, az;—1 <
bai—1 < az; < bz;. Without loss of generality assume that
shot 2¢ — 1 was used for the first time before shot 2i was
introduced. Then there exists an interval v;;, = [pj;,gj;]
such that EGR(vj;) = 2i, qj; = b2; (i.e. vj; defines the right
boundary of the range of vy;), and p;; > bz;i—1 (otherwise
vj; would be stabbed by the earlier shot 2¢ — 1).

Such an interval vj; exists for each pair of shots 2i — 1, 2,
i =1,...,\m/2], and vj;, ¢ = 1,...,|m/2] are pairwise
disjoint. They form an independent set of G of size |m/2].
Therefore 8(G) > |m/2], hence EGR(G) <20(G)+1. O
Observe that the whole argument in the proof does not
change if we replace intervals by arcs. Therefore we obtain
the final result:

THEOREM 3.4. There is an optimal on-line algorithm for
MCC and O-LSP problems with the competitive ratio 2.

Acknowledgement Support of the Kentucky Biomedical
Research Infrastructure Grant is acknowledged.

Bibliography

[BL76] S. Booth, S. and S. Lueker. Testing for the con-
secutive ones property, interval graphs, and graph planarity
using PQ-tree algorithms, J. Comput. Syst. Sci. 13 (1976),
335-379.

[ChN99] Chaudhuri, J. and S. C. Nandy. Generalized shooter
location problem. Lecture Notes in Computer Science 1627
(1999), 389-399.

[F85] Fishburn, P. C. Interval Orders and Interval Graphs:
A Study of Partially Ordered Sets. New York: Wiley, 1985.

[HT91] Hsu, W.-L., and K.-H. Tsai, Linear time algorithms
on circular-arc graphs, Information Processing Letters 40
(1991), 123-129.

[JK02] Jaromczyk, J. W. and M. Kowaluk, A kinetic view
of the shooter problem, Proceedings of the 18th European
Workshop on Computational Geometry, 2002.

[K98] Kierstead, H. A., Recursive and On-Line Graph Color-
ing, in Handbook of Recursive Mathematics, vol. 2, Recur-
sive Algebra, Analysis and Combinatorics, Elsevier (1998),
1233-1269.

[KQ95] Kierstead, H. A. and J.Qin, Coloring interval graphs
with First-Fit, Discrete Math. 144 (1995) 47-57.

[S89] Slusarek, M., A coloring algorithm for interval graphs,
in: Mathematical Foundations of Computer Science 1989,
Lecture Notes in Computer Science 379 (1989) 471-480.

[S95] Slusarek, M., Optimal on-line coloring of circular arc
graphs, RAIRO Inform. Theor. Appl. 20 (1995) 423-429.

Convex sets in graphs

J. Céceres *! A. Méarquez *? O.R. Oellermann 3 M.L. Puertas *!

The study of abstract convexity began in the early fifties with the search for an axiom system
that defines a convex set and in some way generalises the classical concept of a Euclidean convex
set. Numerous contributions to this topic have been made. An extensive survey of this subject
can be found in [15].

Among the wide variety of structures that have been studied under abstract convexity are
metric spaces, ordered sets or lattices and graphs, the last being the focus of this paper. Several
abstract convexities associated with the vertex set of a graph are well-known (see [8]). Their study
is of interest in Computational Geometry and has some direct applications to other areas such as,
for example, Game Theory (see [4]).

For graph terminology we follow [11]; except that we use vertex instead of point and edge
instead of line. All graphs considered here are finite, simple, unweighted and undirected. The
interval between a pair u, v of vertices in a graph G is the collection of all vertices that lie on some
shortest u —v path in G and is denoted by Ig[u,v] or I[u,v] if G is understood. Intervals in graphs
have been studied extensively (see [2, 13, 14]) and play an important role in the study of several
classes of graphs such as the Ptolemaic graphs or block graphs. A subset S of vertices of a graph
is said to be conwvez if it contains the interval between every pair of vertices in .S. This definition
allows us to study several problems from Euclidean convexity in a finite and discrete setting.

If S is a convex set in a graph, a vertex p € S is said to be an extreme point for S if S — {p} is
still convex. A vertex in a graph is simplicial if its neighbourhood induces a complete subgraph.
So p is an extreme vertex for a convex set S if and only if p is simplicial in the subgraph induced
by S.

The convexr hull of a set S of vertices in a graph G is the smallest convex subset of G that
contains S and is denoted by CH(S). It is true, in general, that the convex hull of the extreme
points of a vertex set S is contained in S, but equality holds only in special cases. If a graph
satisfies this property for every convex subset of the vertex set, it is said to have the Minkowski-
Krein-Milman property. In [8] it is shown that a graph has this property if and only if it has no
induced cycles of length bigger than 3 and has no induced 3-fan (see Figure 1).

Figure 1: A 3-fan

If a graph G has the Minkowski-Krein-Milman property and S is a convex set of V(G), then we

*Research partially support by FQM164, FQM305, BFM2001-2474 grants.
TResearch supported by an NSERC grant CANADA.

I University of Almeria (Spain).

2University of Winnipeg (Canada).

3University of Sevilla (Spain).

93

can rebuild the set .S from its extreme vertices using the convex hull operation. Since this cannot
be done with every graph, using only the extreme vertices of a given convex set S, it is natural
to ask if it is possible to extend the set of extreme vertices of S to a set that allows us to rebuild
S using the vertices in this extended set and the convex hull operation. We answer this question
in the affirmative using the collection of ‘contour vertices’ of a set. To this end, let S be a set of
vertices in a graph G and recall that the eccentricity in S of a vertex u € S is given by eccs(u) =
max{d(u,v) : v € S} and a vertex v € S for which d(u,v) = eccs(u) is called an eccentric vertez
for win S. In case S = V(G), we denote eccs(u) by ecc(u). A vertex u € S is said to be a contour
vertex of S if eccs(u) > eces(v) for every neighbour v of w in S. The set of all contour vertices of
S is called the contour of S and is denoted by Ct(S). If S = V(G), the set is called the contour
of G and is denoted by Ct(G).
The relationship between contour and extreme points is shown in the two following results.

Lemma 1. Let G be a graph and S CV(G). Then Ct(S) contains all extreme vertices of S.

Proposition 2. Let G be a distance-hereditary graph without induced 4-cycles. A vertex x € V(G)
is a contour vertex for G if and only if each neighbour v of © which is on a shortest path between
x and some eccentric vertex for x satisfies N(x) C N(v).

The following result shows that the convex hull of the contour set of a convex set of vertices
in a graph is the entire set, without any restriction on the graph. So this result is similar to the
Minkowski-Krein-Milman property and holds for all graphs.

Theorem 3. Let G be a graph and S a convex subset of vertices. Then S = CH(Ct(S5)).

Now we characterize those graphs that are the contour of some other graph. The following
results tells us which graphs are not the contour of any graph.

Proposition 4. If H is a connected, non-complete graph with radius 1, then H is not the contour
of any graph.

On the other hand, suppose that H is a connected graph with radius greater than 1. We now
describe a graph G such that its contour is H, using the construction given in [3]. Let G be the
join of H and K;. Then every vertex of H has eccentricity 2 and the vertex of G — V(H) has
eccentricity 1. Hence the vertices of H are precisely the contour vertices of G.

A slightly different construction allows us to obtain a graph with given disconnected contour
set such that the eccentricities of the vertices in every component are given numbers at least 2.

More precisely, let H be a disconnected graph with components, Hy, Ho, ..., Hi. Let n1,ns,...ng
be k natural numbers such that ny = n; = max{ni,ns,...nx} and M = max{ni,na,...nx} <
2min{ny,na2,...,nr} = 2m. Note that these are natural restrictions, because M will be the

diameter of the graph G and m will be greater than or equal to the radius. Then there exists
a connected graph G such that H is the contour of G and the eccentricity of every vertex in
each component H; of H is equal to n;. To construct such a graph G we begin with the path
V1V ... vp41 Of order M + 1. Now replace v; by H; and vy41 by Hy so that all vertices in H;
are neighbours of vo and all vertices in Hy, are neighbours of vyy.

Now, for each ¢, 2 < i < k — 1 there exists a vertex v,, on the path such that its eccentricity
is n; — 1. We now add H; to the graph and join all the vertices of H; to vy, (see Figure 2). Then
ecc(u;) = n; for all w; € H;, and Ct(G) = H.

In order to find the convex hull of a set S one begins by taking the union of the intervals
between pairs of vertices of S, taken over all pairs of vertices in S. We denote this set by I¢[S]
or I[S], i.e., I[S] = Ugyvycsl[u,v] and call it the geodetic closure of S. One then repeats this
procedure with the new set and continues until, for the first time, one reaches a set 7' for which
the geodetic closure is the set itself , i.e., T = I[T]. This is then the convex hull of S. If this
procedure only has to be performed once, we say that the set S is a geodetic set for its convex
hull. In general a subset S of a convex set T is a geodetic set for T if I[S] = T. The notion of a
geodetic set for the vertex set of a graph was first defined in [5].

o4

Hl A% VM

Figure 2: A disconnected contour set

We now focus on geodetic sets in ‘distance hereditary graphs’. We first discuss here how these
graphs are related to the graphs with the Minkowski-Krein-Milman property. Howorka [12] defined
a connected graph G to be distance hereditary if for every connected induced subgraph H of G
and every two vertices u,v in H, dg(u,v) = dg(u,v). In the same paper several characterisations
for this class of graphs are given. We state here only one of these which we will use in this paper.

Theorem 5 ([12]). A connected graph G is distance hereditary if and only if every cycle in G of
length at least 5 has a pair of crossing chords.

Further useful characterizations for this class of graphs were established in [1, 7, 10]. Apart
from having elegant characterisations, distance hereditary graphs possess other useful properties.
It is a class of graphs for which several NP-hard problems have polynomial solutions. For example,
it has been shown in [6, 7] that the Steiner problem for graphs, which is known to be NP-hard
(see [9]), can be solved in polynomial time in distance hereditary graphs. Moreover, these graphs
are Steiner distance hereditary as was shown in [7]; i.e., the Steiner distance of a set of vertices is
the same, in any connected induced subgraph that contains it, as it is in the graph itself.

The class of distance hereditary graphs also properly contains the graphs that possess the
Minkowski-Krein-Milman properly since a graph is chordal without an induced 3-fan if and only if
it is a distance hereditary graph without an induced 4-cycle. It was shown in [8] that in a chordal
graph every non-simplicial vertex lies on a chordless path between two simplicial vertices. If G is
a chordless graph without an induced 3-fan, then G is distance hereditary and thus every induced
path is necessarily a shortest path. Hence the simplicial vertices for a convex set S in a graph with
the Minkowski-Krein-Milman property is a geodetic set for S. We show that the contour vertices
of a distance hereditary graph form a geodetic set for the graph.

We need the following Lemma, that relates eccentric and contour points in distance hereditary
graphs.

Lemma 6. (a) If G is a distance hereditary graph and x € V(G), then there is an eccentric vertex
for x that is a contour vertex.

(b) Let G be a distance hereditary graph without induced 4-cycles. If x € V(G) is such that
ecc(x) > 2, then each eccentric vertex of x is a contour vertex of G.

Theorem 7. Let G be a distance hereditary graph. Then Ct(G) is a geodetic set for G.

The graph of Figure 3 shows that Theorem 7 does not hold for graphs in general. Note that
the contour set of this graph G is Ct(G) = {v2,v5, w} and vy ¢ I[Ct(G)].

Indeed if we replace v, by a clique of arbitrarily large order and join every vertex in this clique
with vo and vg, we see that the ratio |I[Ct(G)]|/|V (G)| can be made arbitrarily small.

As we mentioned in the introduction, the process of taking geodetic closures starting from a
set S of vertices can be repeated to obtain a sequence Sy, S1,... of sets where Sy = S, S; = I[9],
Sy = I[I[S]].... Since V(@) is finite, the process terminates with some smallest r for which
Sy = Sp41. The set S, is then the convex hull of S and r is called the geodetic iteration number,
gin(S), of S. In the graph G of Figure 3, ¢in(Ct(G)) = 2. It remains an open problem to
determine if gin(Ct(G)) can be larger than 2 and indeed if gin(Ct(G)) can be arbitrarily large.

35

Figure 3: A graph whose contour set is not geodetic

References

[1]

[2]

[10]

[11]
[12]

[13]

[14]

[15]

H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs. J. Combin. Theory Ser. B 41
(1986), pp. 182-208.

H.-J. Bandelt and H.M. Mulder, Three interval conditions for graphs. Twelfth British Com-
binatorial Conference (Norwich, 1989). Ars Combin. 29B (1990) pp. 213-223.

H. Bielak and M. Syslo, Peripherical Vertices in Graphs. Studia Scientiarum Mathematicarum
Hungarica 18 (1983) pp. 269-275.

J.M. Bilbao and P.H. Edelman, The Shapley value on convex geometries. Discr. Appl. Math.
103 (2000) pp. 33—40.

G. Chartrand, F. Harary and P. Zhang, Geodetic sets in graphs. Discuss. Math. Graph Theory
20 (2000) pp. 29-138.

A.D’Atri and M.Moscarini, Distance-hereditary graphs, Steiner trees and connected domina-
tion. SIAM J. Comput. 17 (1988) pp. 521-538.

D.P. Day, O.R. Oellermann and H.C. Swart, Steiner distance-hereditary graphs. SIAM J.
Discrete Math. 7 (1994) pp. 437-442.

M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs. SIAM J. Alg. Disc.
Math. 7 (1986) pp. 433-444.

M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-
Completeness. W.H. Freeman, New York, 1979.

P.L. Hammer and F. Maffray, Completely seperable graphs, Discr. Appl. Math. 27 (1990) pp.
85-100.

F. Harary, Graph Theory. Perseus Books, Cambridge, Massachusetts, 1969.

E. Howorka, A characterization of distance hereditary graphs, Quart. J. Math. Ozford 28
(1977) pp. 417-420.

H.M. Mulder, The interval function of a graph. Mathematical Centre Tracts, 132. Mathema-
tisch Centrum, Amsterdam, 1980.

L. Nebesky, Characterizing the interval function of a connected graph. Mathematica Bohemica
123 (1998), pp. 137-144.

M.J.L. Van de Vel, Theory of convez structures. North-Holland, Amsterdam, 1993.

96

Graphs of triangulations and perfect matchings

M. Houle! F. Hurtado? M. Noy? E. Rivera-Campo?®

Abstract

Given a set P of points in the plane, the graph of triangulations 7 (P) has a vertex for every
triangulation of P, and two of them are adjacent if they differ by a single edge exchange.
In this paper we prove that the subgraph Ta((P) of T(P), consisting of all triangulations
of P that admit a perfect matching, is connected. A main tool in our proof is a result of
independent interest, namely that the graph M(P) that has as vertices the non-crossing
perfect matchings of P and two of them are adjacent if their symmetric difference is a single
non-crossing cycle, is also connected.

Keywords. Triangulation. Perfect matching. Non-crossing graph.

1 Introduction

Given a set P of points in the plane, the graph of triangulations 7 (P) has a vertex for every
triangulation of P, and two of them are adjacent if they differ by a single edge exchange. Graphs
of triangulations have been widely studied; see for example [5, 6]. In particular, it is well-known
that 7 (P) is a connected graph.

In this paper we study the subgraph Ta(P) of T(P), consisting of all triangulations of P
that admit a perfect matching. Not every triangulation contains a perfect matching, so in general
Trm(P) is a proper subgraph of 7 (P). Our main result is that the graph T (P) is connected for
any set P in general position. In other words, we show that any two triangulations of P containing
a perfect matching can be connected through a sequence of edge exchanges, always resulting in
triangulations containing a perfect matching.

In order to prove our main result, we first prove another result of independent interest, which
we now describe. Given a set P in the plane of even cardinality, a perfect matching in P is said to
be non-crossing if no two of its edges intersect. The graph M(P) has as vertices the non-crossing
perfect matchings of P, and two of them are adjacent if their symmetric difference is a single
non-crossing cycle. The case were P is in convex position was studied in [4]. We show that the
graph M(P) is connected for any set P in general position; this is the key ingredient for proving
that Ta(P) is a connected graph.

The rest of the paper is organized as follows. Section 2 contains the results on graphs of perfect
matchings, and Section 3 on graphs of triangulations containing perfect matchings. Our graph
theory terminology follows that of [2]. Throughout the paper we assume that all point sets are in
general position, that is, no three points are collinear.

LIBM Research, Tokyo Research Laboratory, Japan, meh@trl.ibm.com.

2Departament de Matematica Aplicada 11, Universitat Politecnica de Catalunya, Spain, hurtado@ma2.upc.es,
noy@ma2.upc.es. Partially supported by Projects DGES-SEUID PB98-0933, MCYT-BFM2001-2340, MCYT-
FEDER-BFM2002-0557 and Gen. Cat 2001SGR00224.

3Departamento de Mateméticas. Universidad Auténoma Metropolitana-I, México, erc@xanum.uam.mx. Part of
the research was done while this author was on sabbatical leave visiting the Universitat Politecnica de Catalunya
with grants by MECD-Spain and CONACYT-México.

a7

2 Graphs of perfect matchings

Let P be a set of 2m points in general position in the plane. The symmetric difference of two
non-crossing perfect matchings in P is a set of alternating cycles; some of these cycles may have
crossings, see Figure 1. We say that two perfect matchings M; and M, differ in a single alternating
non-crossing cycle exchange if their symmetric difference is a single non-crossing cycle; for brevity
we say that M> is obtained from A3 by performing a flip.

/\\

."--
e

H

.

Q

Figure 1: Two matchings M; and Mo; their symmetric difference (right) is the union of two
alternating cycles Cy and Cs, but only C is non-crossing.

The graph of non-crossing perfect matchings M (P) of P is the graph with one vertex for each
non-crossing perfect matching of P, in which two matchings are adjacent if and only if one can
be obtained from the other by a flip. The requirement that the cycle involved in the exchange is
non-crossing is not only a natural one, but it is critical when applying Theorem 2.1 in the next

section.

Theorem 2.1. For any set P of 2m points in general position in the plane, the graph M(P) is
a connected graph.

3 Graphs of triangulations

Let P be a set of points in the plane in general position. The graph of triangulations 7 (P) is
the graph with one vertex for each triangulation of P, in which two triangulations 77 and 75 are
adjacent if and only there are edges e € T1 \ T> and f € T \ T1 such that Tb =17 \ {e} U {f}.
In other words, T, is obtained from T} by replacing the diagonal of a convex quadrilateral by the

other diagonal.
For a non-crossing set E of line segments with endpoints in P, let 7 (P, E) be the subgraph of

T (P) induced by the set of triangulations of P that contain all edges in E.

Lemma 3.1. Let P be a set of points in general position in the plane, E be a non-crossing set
of line segments with ends in P and e ¢ E be a line segment, also with ends in P, and such that
E U {e} is a non-crossing set. For each triangulation T of P that contains all edges in E there is
a triangulation S of P containing E U {e} which is connected to T in T (P, E).

Theorem 3.2. 7 (P, E) is a connected graph for any set P of points in general position in the
plane and any non-crossing set E of line segments with ends in P.

For a set P of 2m points in general position in the plane, let Taq (P) be the subgraph of 7 (P),
induced by the set of triangulations of P that admit a perfect matching. Notice that a set P may
admit some triangulations which contain a matching while some others do not contain any (Figure

2).

Theorem 3.3. Tr (P) is a connected graph for any set P of 2m points in general position in the
plane.

58

Figure 2: The triangulation on the left part of the figure contains a perfect matching (solid lines),
but the triangulation on the right part does not contain any, because the 8 independent white
nodes are adjacent only to the 6 black nodes.

4 Conclusions

Our definition of adjacency of the graph of non-crossing matchings M(P) of P via a single alter-
nating non-crossing cycle exchange contains no constraint on the length of the cycle. Nevertheless,
as pointed out in [3], for the purposes of optimization, enumeration, and random generation, it is
desirable that the transformation making a class connected is as local as possible, which somehow
amounts to use an exchange of constant size at each step. Therefore it is natural to consider a
graph of matchings M’(P) in which only exchanges in cycles of length ¢ = 4 (say) are considered.
It is an open problem to decide whether such graph is connected for some constant value of £. For
¢ = 4 we have been able to prove that the corresponding graph contains no isolated point; yet
even this modest fact required quite a long proof.

Finally, there other subgraphs of 7 (P) for which it would be interesting to know whether they
induced a connected subgraph or not. For instance, the set of 3-connected triangulations of P
(see [1] for a related problem), or the set of triangulations with minimum degree at least k.

References

[1] D. Avis, Generating rooted triangulations without repetitions, Algorithmica 16 (1996), 618
632.

[2] G. Chartrand and L. Lesniak, Graphs and digraphs, 3d edition, Chapman and Hall (1996).

[3] C. Hernando, M. Houle and F. Hurtado, On Local Transformation of Polygons with Visibility
Properties, Theoretical Computer Science, to appear.

[4] C. Hernando, F. Hurtado and M. Noy, Graphs of non-crossing perfect matchings, Graphs and
Combinatorics, to appear.

[5] F. Hurtado and M. Noy, Graph of triangulations of a convex polygon and tree of triangula-
tions, Computational Geometry: Theory and Applications 13 (1999), 179-188.

[6] F. Hurtado, M. Noy and J. Urrutia, Flipping edges in triangulations, Discrete and Computa-
tional Geometry 22 (1999) 333-346.

99

60

Computing the Detour of Polygons

Ansgar Griine Rolf Klein Elmar Langetepe

Abstract

Let P be a simple polygon in R? with n vertices. The detour of P between two points,
x,y € P, is the length of a shortest path contained in P and connecting x to y, divided by the
distance of these points. The detour of the whole polygon is the maximum detour between
any two points in P. We first analyze properties of pairs of points with maximum detour.
Next, we use these properties to achieve a deterministic O(n?)-algorithm for computing the
maximum Euclidean detour and a deterministic O(n log n)-algorithm which calculates a (1+¢)-
approximation. Finally, we consider the special case of monotone rectilinear polygons. Their
L'-detour can be computed in time O(n).

1 Introduction

Let P be a connected set in R?. For any two points x,y € P let dp(x,y) denote the infimum of
the lengths of all curves which are contained in P and connect z to y. The length of the curves is

measured using a given norm ||.||. The detour dp(z,y) between x and y in P with respect to ||.||
and the detour §(P) of P are defined as
dp(z,
oay) = TEY)= sw delay).
||y - "I"H z,yeEP,x#y

Narasimhan and Smid [8] examined the problem of computing a value similar to §(G) for a
given Euclidean graph G. They restricted the maximum to pairs of vertices. Thus, their problem
is slightly different (but not necessarily easier). The maximum of all points was first considered by
Ebbers-Baumann et al. [3]. They presented an O(n logn) approximation algorithm for n-link chains
in E2. Later, Agarwal et al. [1] gave a randomized O(n log® n) and a deterministic O(n log* n) exact
algorithm. Simultaneously, Langerman, Morin and Soss [6] constructed an O(nlogn) randomized
algorithm for solving the same problem.

In this abstract we present algorithms computing the detour of a simple polygon P C R? where
P denotes the union of the interior and the boundary. We first analyze some general properties of
detour maxima, then we develop an algorithm for the Euclidean metric, and finally, we present a
faster algorithm for the L'-detour of monotone rectilinear polygons.

2 Properties of Maxima

Ebbers-Baumann et al. [3] showed for the Euclidean norm that every polygonal chain C' in R?
has a co-visible! detour mazimum (p,q), i.e. dc(p,q) = §(C). The proof can easily be extended to
polygons with detour §(P) > 1 and arbitrary norms.2

Lemma 1 Let P C R? be a simple polygon with 5(P) > 1 where the detour is measured with
respect to an arbitrary norm ||.||. Then, there always exists a detour mazimum (p,q) € P x P
which is co-visible in P€ 3.

'n this setting, (p,q) is co-visible iff pgN C = {p,q}.
2Note that for Euclidean distances §(P) = 1 iff P is convex.
3pC =R2\ P; (p,q)is co-visible in PC iff pgn P = {p,q}.

61

Figure 1: Boundary intersection points of pg

Proof. Let (p, q) be a detour maximum. Due to d(p,q) = 6(P) > 1, (p,q) cannot be co-visible in P.
If (p,q) is co-visible in PC, the proof is done. Otherwise, let py := p, p, := ¢ and let p1,...,p, 1
be the boundary intersection points of pg apart from p, q (see Fig. 1), i.e. p; € pgNIP \ {p,q} and
p; touches pgN PC.

If the points p; are ordered by their distance to p, we get ||pg|| = Z?:_Ol ||Pipitzil|- Additionally
applying the triangle inequality of dp(.,.) yields:

dp(p, q) A'i“<eq“' E?;ol dp(pi, Piy1)

(1) op(pa) = —= < —
|pql E?zo ||Pipi1ll
dp(pi; pi+1)
2P\ Firl) So(0i. s
LB ol odiE PPy
The maximum on the right hand side is attained by a pair of points being co-visible in PC. O

For the Euclidean norm one can even show that every detour maximum of any non-convex
polygon must be co-visible in P€. For the L'-norm we will give an stricter statement in section 4.

3 Euclidean Detour of Simple Polygons

In this section, we introduce an algorithm which computes the exact Euclidean detour of a given
polygon P with n vertices. Lemma 1 already allows us to restrict the search for detour maxima to
the boundary of P. The following lemma further reduces the number of candidates.

Lemma 2 Any simple polygon P C R? has a detour mazimum (p,q) which is a vertex-boundary
cut, i.e. at least one of the points p, q is a vertex and the other one lies on the boundary OP.

Lemma 2 suggests the following strategy: For every vertex p of P and every edge e of the
boundary compute the local maximum maxge. dp(p,q) and return the maximum of these values.
However, this does not lead directly to a quadratic upper time bound because the local maximum
cannot be found in constant time.

Figure 2: Shortest path tree SPT(p), funnel F}, . and its regions

To find a local maximum we consider the funnel F}, . of p and e (see Fig. 2) first examined by
Lee and Preparata [7]. Let a and b be the vertices incident to e, then Fj, . is the polygon bounded

62

by e and the shortest paths 7(a,c) and 7 (b, c), where ¢ is the first common vertex of 7(a,p) and
7(b,p). This vertex ¢ is called the cusp of the funnel, and both paths 7 (a,¢) and 7 (a,b) are outward
convex (see [5]).

For every point g € e the shortest path 7(¢,p) can be divided into 7(g,¢) and 7 (¢, p), the first
one completely contained within F, .. We associate with ¢ the first vertex of Fj, . hit by 7(g,p).
Thus, if k£ is the number of vertices of Fj, ., the edge e will be divided into k regions Ry, ..., Ry
including the degenerate cases Ry := {a} and Ry, := {b} (see Fig. 2). For each such region a local
maximum can be computed in O(1) if F}, . and |7 (p, ¢)| are known.

Hence, a local maximum of any point p and any edge e can be computed in O(k) where k is the
number of vertices (or edges) of F}, .. The funnel F), . can easily be computed from the shortest path
tree SPT(p) in O(k) time by looking for the first common vertex of w(a,p) and w(b,p). Because
every edge of the shortest path tree SPT(p) (see Fig. 2) can be at most on the boundary of two
funnels and SPT(p) has n — 1 edges, we get the value max,eap 0p(p,) in time O(n) if SPT(p) is
known.

Guibas et al. [5] have shown how to construct SPT(p) in linear time in any triangulated simple
polygon. Since we can use Chazelle’s [2] well-known algorithm to triangulate P in linear time, our
idea leads to an algorithm computing max,cop 0p(p,q) in O(n). Thus, applying Lemma 2 yields
a way to get the detour of P in O(n?).

Theorem 3 Let P C R? be a simple polygon with n vertices. Its mazimum Euclidean detour
value §(P) and a pair of points (p,q) attaining the maximum can be computed in time O(n?).

However, this result might not be best possible. One can transfer the approximation algorithm
of Ebbers-Baumann et al. [3] to the setting of simple polygons achieving a (1 + ¢)-approximation
in O(nlogn). This hints that there could be a sub-quadratic solution. The complete proofs of the
previous results can be found in [4].

4 L'-Detour of Monotone Rectilinear Polygons

Within the simpler setting of monotone rectilinear* polygons, we can compute the L'-detour in
linear time. The main reason is a stricter statement about detour maxima proven similarly to
Lemma 1:

Lemma 4 Let P C R? be a simple rectilinear polygon and let (p,q) € P x P be a L*-detour
mazimum. If R(p,q) denotes the bounding rectangle® of p and q, its intersection with P must be
empty apart from p and q, i.e. R(p,q) NP = {p,q}.

It follows immediately that any L!-detour maximum (p,q) must either be a pair of vertices
or an axis-parallel pair of boundary points. In both cases, (p,q) must be co-visible in PC. If P
is z-monotone® (y-monotone), further arguments yield that every maximum must be a horizontal
(vertical) vertex-boundary cut.

W.lo.g. let P be z-monotone. We describe an algorithm examining all upper maximum
candidates, i.e. horizontal vertex-boundary cuts of the upper boundary which are co-visible in P€.
The lower boundary can be treated in the same way.

The algorithm starts at the left-most vertex of the upper boundary and proceeds to the right
(see Fig. 3). While moving on the boundary chain, a stack holds every previously visited left
vertical segment s (i.e. s is vertical and P lies to the left of s) for which there has not been found
any opposite right segment, yet. If the current boundary point is moving upward a vertical (right)
edge, the algorithm pops the corresponding left segments and examines a horizontal pair each time
it pops a vertex of a left segment or finds a vertex on the current right segment.

4A polygon is rectilinear iff every edge is either horizontal or vertical.

SR(pa q)={re R2| min(pe, ¢z) < 72 < max(pz, ¢z) A min(py, gy) < 7y < max(py, gy)}-
P is z-monotone iff its intersection with any vertical line is connected.

63

| segments on stack

--- found candidates

current boundary
point

[]

Figure 3: Some states of the algorithm for monotone rectilinear polygons

When the algorithm has found a maximum candidate (p,q), it has to calculate its detour.
Let m(p,q) be a rectilinear shortest path connecting p and ¢ within P. The y-length I, (7 (p, q))
is the summed up length of all vertical segments of 7(p,q). The z-length I, (7(p,q)) is defined
analogously. Obviously, d% (p,q) = I, (m(p,) + Ly (7(p,q)) where l,(m(p,q)) = |ps — ¢z| due to P
being z-monotone. Thus, for computing 6% (p, g) we just need the coordinates of p and q and the
value I, (7(p, ¢)). The additional path information for calculating , (7 (p, ¢)) can also be stored on
the stack without increasing the linear time bound of the algorithm. Further details are omitted
in this abstract.

Theorem 5 Let P C R? be an z-monotone (or y-monotone) rectilinear polygon with n vertices.
An L*-detour mazimum (p,q) and its value 51[;,1 (p,q) = 5L1(P) can be computed in time O(n).

5 Open Questions

One main questions remains open: Is there a sub-quadratic algorithm computing exactly the
Euclidean detour of any simple polygon or is there a quadratic lower bound? The same problem
is not solved for the presumably easier setting of simple rectilinear polygons and the L'-norm.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, and M. Sharir. Computing the detour of polygonal curves.
Technical report, Freie Universitit Berlin, Fachbereich Mathematik und Informatik, 2002.

[2] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485—
524, 1991.

[3] A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A fast algorithm for approximating
the detour of a polygonal chain. ESA 2001 - European Symposium on Algorithms, 2001.

[4] A. Gruene. Umwege in Polygonen. Diplomarbeit, Universitét Bonn, 2002.

[5] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209-233, 1987.

[6] S. Langerman, P. Morin, and M. A. Soss. Computing the maximum detour and spanning ratio
of planar paths, trees and cycles. STACS 2002, pages 250-261, 2002.

[7] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14:393-410, 1984.

[8] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs. SIAM J.
Comput., 30:978-989, 2000.

64

More results about spanners in the [;-metric.*

J. Céceres! C. I. Grima, A. Marqueztand A. Moreno-Gonzalez?

Abstract

In this work we study more questions about spanners in the l;-metric. Concretely, we
will see that adding some Steiner points to a set of sites the metrically complete graph of
the new set has a linear number of edges. We will also characterize the free dilation trees.
Finally, inspired in the work for the li-metric, we will study points in general position for
other metrics, the A-metrics.

1 Introduction.

There are many applications in geometric network design in which it would be interesting to find
graphs with few edges that approximate shortest paths between all pair of vertices. Since in many
problems, as the design of VLSI circuits, the metric that reflexes the actual distance between
the vertices is the [j-metric, in previous works [2, 3] we presented some results about the first
questions that arise in the study of these graphs. Given a set of sites .S in the plane, the dilation of
a subgraph of the complete geometric graph is the largest ratio between the length of the shortest
path from a pair of points of S to the distance of those points in the plane. In this way, we have
presented the next results:

e It is possible to construct graphs approximating the complete Euclidean graph closely in
the [;-metric. Moreover, we found graphs that are not the complete graph but they have
dilation 1 (dilation free graphs). More precisely, given a set of sites S in the plane, we call
the metrically complete graph of S (denoted M (S)) to the minimal dilation free graph.

e The metrically complete graph is strictly smaller than the complete graph in the [;-metric;
in fact, if K(S) denotes the complete geometric graph on S, then |K(S) — M (S)| € O(N3/?).

e There exists a characterization of the set of sites with a planar metrically complete graph.
Also, we have found some necessary conditions for a planar graph in order to be isomorphic
to a metrically complete graph.

In this work we present some additional results that continue those two mentioned works.
Firstly, given a set of sites S in the plane we try to reduce the size of M (S) and we will see that
adding some Steiner points to S the metrically complete graph of the new set of sites has a linear
number of edges. Secondly, we try to find which trees have dilation 1 in the [;-metric, obtaining a
characterization for these graphs. Finally, we try to generalize some of our first results for other
metrics, the A-metrics. In fact, we will see that the metrically complete graph of a set of sites is
smaller than the complete Euclidean graph for those metrics.

*Partially supported by MCyT project BFM2001-2474

fDepartamento de Matemaética Aplicada y Estadistica. Universidad de Almerfa. E-mail: jcaceres@ual.es
fDepartamento de Matemética Aplicada I. Universidad de Sevilla. E-mail: {grima,almar}@Qus.es
8Departamento de Matemaéticas. Universidad de Huelva. E-mail: maria.moreno@dmat.uhu.es

65

2 It is possible to reduce the size of a metrically complete
graph.

As we have said above, given a set of sites S in the plane, |K(S) — M(S)| € O(N3/2) in the
l1-metric, but, in general, M (S) has a quadratic number of edges. Thus, the first question we
consider is to reduce the size of M (S) adding some new points to S. In order to find these points
we only have to make a partition of the initial set of sites that leads to a kd-tree [1], (see Figure 1).
Then, we add one Steiner point in the intersections of the lines used to make the partition. Then,
we can prove the next result.

| :
pl []
R e P
[)
L i ‘
) L
L P
2 [)
. Po
4
A
A

Figure 1: A partition of a set of sites.

Theorem 1 Given a set of n sites S in the plane, there exists a linear number of Steiner points
S¢ verifying that |M(S U Sy)| € O(n).

3 Free dilation trees.

As we have said in the Introduction, the second question we try to solve is to find which are the
trees with dilation 1. In the Euclidean metric the answer to this question is very simple: we can
only construct a free dilation tree when the sites are in a straight line. In the [;-metric, some new
cases appear.

Theorem 2 If T is a free dilation tree, then T is isomorphic to one of the trees in Figure 2.

4 Points in general position for a \-metric.

Given a A-metric, a ball centered in x and radio r is a regular polygon of A edges verifying that
the Euclidean distance between x and the vertices of the polygon is r.

Observe that for any value of A there exist infinite regular polygons centered in x, so a A-metric
is not only characterized by the number of edges, but also by their orientation. However, it is only
necessary to solve the question for one of them.

One of the 4-metrics is the [;-metric, so it is natural to consider the question of constructing
free dilation graphs for other values of . In fact, we will see that the metrically complete graph
of a set of points has less edges that the complete graph in a A-metric. In order to solve this result

66

00 0 00—0—0——0—0 0 0 O o o o

o o o

(a) (b)
o
o o
o o
o
oo o
oo o oo o
oo o

o
o o
o o
o
(c) (d)

Figure 2: Free dilation trees in the [;-metric.

we will prove that for every A, there exists a number n(\) verifying that any set of points with
more than n(\) points in general position for the Euclidean metric, is not in general position in the
A-metric. We consider that a set of points is in general position if there are not three consecutive
points in a straight line.

Then, the first question we must solve is to find the minimum arc between two points. Then,
let u1,us be two points in the plane and for each point u; we consider a neighbor FE;. These
neighbors make a partition of the plane in sectors centered in the initial points. If we call Sij the
sector centered in w; that contains u;, the minimum arcs between u; and u; are all the arcs not
decreasing parallel to the border of Sij()Sji, [7, 5], (see Figure 3).

Figure 3: Two minimum arcs between u; and u; in a 6-metric.

Lemma 1 Given a \-metric, there exist, at most, A points in convex position in general position.

Now, in 1935 Erdos y Szekeres [4] proved that for every natural number n there exists an integer
g(n) verifying that for every set with more than g(n) points, there are n in convex position. Then,
we can prove the next result.

67

Theorem 3 For any value of \ there exists n(\) verifying that every set of points with, at least,
n(\) points is not in general position.

Now, our objective is to find bounds for n(\). It is obvious that

A+ 1<) < gh+1),

and it is known [6] that

g(n) < (2:__25> +2

However, this bound does not seem to be tight because for n = 4 we obtain 12 as upperbound
and we know that n(4) = 5. In fact, for small values of A, it is easy to prove that n(A\) = A + 1.

References

1]

2]

J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18:509-517. 1975.

J. Céceres, C. I. Grima, A. Marquez and A. Moreno-Gonzalez. Dilation free graphs in [;-metric.
17th European Workshop on Computational Geometry, Berlin. 2001.

J. Caceres, C. I. Grima, A. Marquez and A. Moreno-Gonzalez. Planar graphs and metrically
complete graphs. 18th European Workshop on Computational Geometry, Warsaw. 2002.

P. Erdos and G. Szekeres. A combinatorial problem in geometry. em Compositio Math.,
2:463-470. 1935.

R. Klein. Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Science.
Springer-Verlag. 1989.

G. Toth and P.Valtr. Note on the Erdos-Szekeres theorem. Rutger University. Technical Report
DIMACS TR:97-31. 1997.

P. Widmayer, Y. F. Yu and C. K. Wong. Distance problems in computational geometry for
fixed orientations. Proceedings 1st ACM Symposium on Computational Geometry, 186-195.
1985.

68

Approximately Matching Polygonal Curves under
Translation, Rotation and Scaling with Respect to the
Fréchet-Distance

Michael Clausen* and Axel Mosig
Institut fir Informatik III, Universitat Bonn

January 3, 2003

Abstract

Let P :[0,m] — R? and Q : [0, n] — R? be polygonal curves in the plane, G a subgroup of
the affine group AGL(2,R), and € > 0. By definition, a transformation g € G yields a (G, €)-
Fréchet-match of P and @ if the Fréchet-distance of P and the transformed version g@ of @ is
at most €. In this paper we design a c-approximation algorithm, ¢ > 2, that constructs such
(G, ce)-Fréchet-matches for both the group G, of rigid motions and the group G generated by
translations and uniform scalings. We associate to P, @ and € a certain acyclic digraph M, .,
see Fig. 1, whose edges are either weighted by closed intervals in R5 0 (G = G) or by circular
arcs (G = G,). All maximal paths in M, , correspond to discrete reparametrization pairs;
such a pair yields a c-approximate solution if the intervals assigned to the edges along the
path have a non-empty intersection. To decide whether such a path exists, we use a dynamic
programming approach, whose time complexity is O(m?n?). There is related work dealing
with smaller subgroups of AGL(2,R): Alt and Godau [1] investigated the case G = {1},
whereas both Alt, Knauer and Wenk [2] and Efrat, Indyk and Venkatasubramanian [4] studied
the case G = T5, which denotes the group of translations.

1 Fréchet-Matches

A polygonal curve of length m € N in R? is defined as a continuous mapping P : [0,m] — R
with the property that for all i € [0 : m — 1] := {0,1,...,m — 1} the curve P|; ;1] is affine,
ie, P(i+A) = (1 = NP(i) + AP(i + 1) for A € [0,1]. A polygonal curve P is completely
described by the sequence of its vertices (po,-...,Pm), where p; := P(i). For real numbers
xz < y and ¢’ < y', let Mon([z,y],[z',y']) denote the set of all continuous, weakly increas-
ing and surjective functions ¢ : [z,y] — [2',y']; note that the surjectivity implies p(z) = '
and p(y) = y' for all ¢ € Mon([z,y],[z',y']). Let P and @) be polygonal curves of lengths
m and n, respectively. The Fréchet-distance dp(P,Q) of P and @ is defined as dp(P,Q) :=
inf, g maxycjo1) d(v(a(t)),w(B(t))), where the infimum is taken over all a € Mon([0, 1], [0,m])
and 8 € Mon([0,1],[0,n]). Any subgroup G of AGL(2,R) acts on R? as well as on the set of
all polygonal curves P by (gP)(t) := gP(t) for ¢ € G. Moreover, if P = (po,...,pm), then
gP = (gpo, ..., 9pm).

We are now ready to describe a typical question in pattern matching: given a subgroup G of
AGL(2,R), two polygonal curves P and @, and € > 0, is there a g € G such that dp (P, gQ) < €7
Motivated by this question, we define the set of all (G, €)-Fréchet-matches of P and @ as

Fe(P,Q) :={9 € G |dr(P,9Q) <e}. (1)

Given two polygonal curves P and @ and € > 0, a decision algorithm for this pattern matching
task outputs 1 if F&(P,Q) # 0 and 0 otherwise. Letting ¢ > 1, a c-approzimation algorithm also
outputs 1 if F& (P, Q) # 0. However, the output is guaranteed to be 0 only if & (P,Q) = 0. In
case F&(P,Q) \ F&(P,Q) # 0, the algorithm may answer either 0 or 1. The algorithm proposed
in this paper yields c-approximate solutions for arbitrary ¢ > 2. The algorithm will also be able
to compute specific elements g € F& (P, Q) in case of output 1.

*This work was supported in part by Deutsche Forschungsgemeinschaft under grant CL 64/3

69

2 Approximating Fréchet-Matches by Transporter Sets

In this section P = (po,-..,pm) and @ = {(qo,-.-,qn) will always denote polygonal curves of
lengths m and n, respectively. P is called reducible if and only if, for some i, the vertex p; is
contained in the line segment [p;_1,p;+1]. Eliminating p; from the sequence yields another curve
P’ with dp(P, P') = 0. This elimination process finally yields an irreducible curve. In general, two
polygonal curves P and P’ are called equivalent if and only if their Fréchet-distance is zero. The
Fréchet-distance defines a metric on the equivalence classes of polygonal curves. Obviously, in each
equivalence class there is a unique irreducible curve. All other members of this class can be viewed
as oversamplings of this irreducible version. In what follows, oversampling will play a crucial role.
Let 6 > 0. A polygonal curve P is said to be d-sampled if and only if d(p;—1,p;) < 26, for all
€ [1 : m]. Given a polygonal curve P, an equivalent, é-sampled curve P’ can be constructed in
an obvious way.
The notion of d-sampled curves is a first step towards discretizing the reparametrizations o and
B. We will replace («, 8) € Mon([0,1],[0,m]) x Mon([0, 1],[0,n]) by discrete reparametrizations
(K,) € Iy n, where

I ={(k,A)| £:[0:m+n]—=>[0:m]and A:[0:m+n] = [0:m] (2)
are both weakly increasing and surjective}.

From the facts that the index sequences k and A are surjective and weakly increasing, we may
conclude that {kst1 — ks, Asy1 — As} € {0,1} for all s € [0 : n + m — 1]. To approximate sets
of Fréchet-matches we use certain transporter subsets of the group G. If d denotes the Euclidean
distance in R? and if P and @ have equal length, then TPQ = {g € G | max; d(p;,9q;) < €} is
called the (G,¢€)-transporter of @ to P. Similarly, 77 := {g € G | d(p,gq) < €} denotes the

(G, e)-transporter of ¢ € R? to p € R%. Obviously, TPQ = nTShe

Theorem 2.1 Let P and @) be 6-sampled polygonal curves of lengths m and n, respectively, with
Fe(P,Q) # 0. Then there exists a pair (k,\) € Ly, ., such that () # TSOTCSOA C]-'EM(P Q).

Unfortunately, our proof of the theorem is not completely constructive, since we require some
g € F&(P,Q) for computing (k, A). When matching two curves, however, such a ¢ is what we are
looking for. Thus, our algorithm for deciding whether Fg (P, ()) is non-empty has to find suitable
integer sequences k and A in a different way. A naive method that enumerates all surjective and
weakly increasing candidate sequences and checks if Tgoi+£o)\ is non-empty for each candidate

sequence only yields an exponential-time algorithm.

3 Intersecting Projected Transporter Sets

Regarding the last theorem, both P ok and @ o A are in (R?)™+"*+1. Thus rp" ., is the

intersection of m + n + 1 individual transporters of the form Tg(’ +)6Q(A Unfortunately, these

individual transporters have a rather complicated structure. In order to simplify the intersection
problem we use the fact that our groups are semidirect products: G = T x H with H = H,. :=
SO(2) for G = G, and H = Hy; := {0E, | 0 > 0} for G = G, where E, denotes the 2 x 2 unit
matrix. Thus the projection n of G onto H with kernel T», i.e., n(th) := h, for t € T» and h € H,
is well-defined. Instead of ng we work with its n-image:

nSs = nlrSs] ={he H|3t € To: the 185}

Note that an analogous statement to TP Q =N T o does not hold for the n-images. Furthermore,

G, s = H, thus to obtain non-trivial transporters we use projected

for p,q € R? we always have 77
transporter sets of the form 77(,,0 o (ao,qn) 38 building blocks. To simplify notation, we let k :=

m+mn + 1 and write P and (instead of P o x and @) o \.

70

Theorem 3.1 Let G € {G,,G,}, k €N, and e > 0. For P,Q € (R*)* and every j € [1 : k — 1]
define

— G G,e
Hj:= m Mips 1,ps), (i 1,05) ﬂn(POvPi>7<IIO7Qi>'
1€[1:5]

Then ng # 0 implies H_1 # 0, whereas ngs = () forces Hi_1 = 0.

Expressed in simple terms, the preceding result states that deciding whether the intersection Hy_1
is non-empty yields an approximate solution to the decision problem asking if the intersection
Tﬁ’é = ﬁ,-nggi is non-empty. Next we take a closer look at the projected (G,e)-transporters

G,e
" po,p1).(q0,41) for G € {Gr:Gs}-

Theorem 3.2 FEach 77(%(;7;1) (go,q1) €O be viewed as a circular arc on the unit circle S', whereas
each 772):;1) (q0,q1) €07 be regarded as a closed interval on Rsq.
Sketch of Proof. One shows that it suffices to compute nff)fm) (0,01) for line segments (po, p1)
and (qo, ¢1) centered at the origin. The construction of the circular arc and the interval is illustrated
in the figure below. |
/’1
r @,)
’ £
a1 90 0, ‘ e % Po
P H r_/
do
9= o
= Po Pr=Po

G =G,. Obvious]y, ng,’é = [91,92]7 where G = Gs. The intersection of the ray HqO
6y — 6, = 2(r,po) and 6> = <Y(r,qo). with the disc Us(po) is a line segment, and thus
Hence, we get 61 = 602 — (f2 — 61) = ng’g can be identified with the closed interval

H(r, q0) — 2(r, po). llooll=/ligollz, llersll2/1lgoll2]-

In case G = G, we can easily decide whether the intersection of finitely many projected trans-
porters is non-empty as N;[z;,y;] # 0 iff max; z; < min; y;.

For G = G, the projected (G,)-transporters are circular arcs, hence intervals on the unit circle.
Such intervals differ in some respects from real intervals. For example, the intersection of two
intervals on S* may consist of up to two disjoint intervals. An easy way to avoid the difficulties in
conjunction with circular-arc intersections is to unroll S' — and intervals on S* — to the interval
[0,27]. Unrolling an interval that covers the angle 0 requires the interval to be split into two
intervals on [0, 27]. Thus, unrolling nG’E N nG V(i 1200) yields up to three (disjoint)

€
(Po,pi),{¢0,4i) (pi—1,pi
intervals in [0, 27].

4 An Efficient Approximate Matching Algorithm

We are now prepared to design an efficient algorithm for approximately matching two polygonal
curves with respect to the Fréchet-distance under a transformation group G € {G,,G;}. To this
end, we introduce for d-sampled polygonal curves P and @ of lengths m and n, respectively,
the acyclic digraph M, := (Vin,n, Em,n) together with a function that assigns a real interval
(G = Gs) or up to two circular arcs (G = G,) to each edge of the graph. (Efrat et al. [4] also
use a graph for finding paths in free-space. However, our graph differs substantially from their
construction.) The digraph M,, , defined by

Vi :=[0:m] x [0:n] and B, , :={((a,b),(c,d)) € V7 , | {1} C{c—a,d — b} C{0,1}},

71

1 2 3

Figure 1: The digraph M3 ».

only depends on m and n, see Fig. 1, whereas the weight of the edge e = ((a,b), (¢,d)) € Ep,»,
depends on P, Q,d, e, and G:

. Getd G,e+d
[P7Q7‘5757G((a’ b)’ (C’ d)) = Mpa,pe)(as,qa) n po,pe)(g0,qa) "

Obviously, every pair (k,A) € Iy, ,, defines (after eliminating loops) a path in M, ,, with source
(0,0) and sink (m,n). Conversely, every such path can be transformed into an element of Z,, ,, as
follows: turn every vertex along the path into a pair (ks, As) and repeat the target node of every
diagonal edge, i.e., replace (a,b) — (a+1,b+1) by the subsequence (a,b), (a+1,b+1),(a+1,b+1).

Now we take a closer look at the case G = G5. (The case G = G, is similar, but a little bit
more technical.) Here, each edge e is assigned the empty set or a closed real interval [{.,r.], see
Theorem 3.2. We have to find a path from (0,0) to (m,n) in M,, , such that the intersection
of the involved intervals is non-empty. To decide whether such a path exists, we use the facts
that NI, [2;,y;] = [max; z;, min; y;] and that max; z; € {z1,...,zn5}. In particular, as M, ,
has 3mn + m + n edges, we have at most 3mn + m + n different left borders to consider. For
each possible left border ¢ we define a new 0 — 1 weight on the edges: edge e has weight 1 iff ¢
is contained in [/.,7.]. By dynamic programming one can test in time O(mn) whether there is a
path from (0,0) to (m,n) involving only edges with weight 1.

Theorem 4.1 For G = G, there is an algorithm that on input P,Q,m,n,0,c (with the above
meaning) computes an element g € fé(6+6) (P,Q) if F&(P,Q) # 0 and computes the output 0 if
]_.é(5+5) (P,Q) = 0. Its running time is O(m>n?).

Thus there is a c-approximation algorithm for determining whether the set of (G, e)-Fréchet-
matches is non-empty, for ¢ = 2(1 + d/¢). The same result holds for G = G,.

5 Final Remarks and Future Work

The systematic use of group transporter sets is the basis of a new technique that generalizes the
concept of inverted files from full-text retrieval. It has been successfully applied to content-based
multimedia retrieval, see [3]. In the present work this concept has been extended to (G,¢)-
transporters. We are currently investigating variants of the described algorithm, including match-
ing curves partially as well as matching under other subgroups of AGL(2,R), in particular the
group of similarity transformations generated by translations, rotations and uniform scalings.

References

[1] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Internat. J.
Comput. Geom. Appl., 5:75-91, 1995.

[2] H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the Fréchet distance. In
Proc. 18th Int. Symp. on Theoretical Aspects of Computer Science, pages 63—74, 2001.

[3] M. Clausen and F. Kurth. A Unified Approach to Content-Based and Fault Tolerant Music Recogni-
tion. IEEE Transactions on Multimedia, 2003. To appear.

[4] A. Efrat, P. Indyk, and S. Venkatasubramanian. Pattern matching with sets of segments. In Proc.
12th ACM Symp. on Discrete Algorithms, January 2001.

72

The polytope of non-crossing graphs on a
planar point set *

David Orden, Francisco Santos

Universidad de Cantabria. Departamento de Matemaéticas, Estadistica y Computacién.
Av. Los Castros, s/n E-39005 Santander, SPAIN. {ordend,santos}@matesco.unican.es

Key Words: pseudo-triangulation, flip, graph, crossingness, marks, polytope.

1 Introduction

The set of (straight-line, or geometric) non-crossing graphs with a given set of vertices
A in the plane is of interest in Computational Geometry, Geometric Combinatorics, and
related areas. In particular, much effort has been directed towards enumeration, counting
and optimization on the set of maximal such graphs, that is to say, triangulations of A.
But little is known about the poset structure of the set of all non-crossing subgraphs under
inclusion. In this paper we associate to A a polytope whose face poset contains the poset
of non-crossing graphs on A embedded in a very nice way.

The construction is based on [5], where a polyhedron X ;(A) of dimension 2n—3 with face
poset (opposite to) that of pointed non-crossing graphs on A is constructed. A straight-line
graph embedded in the plane is called pointed if the edges incident to every vertex span an
angle smaller than 180 degrees. Let n denote the size of A, n, and n; the number of points
in the boundary and the interior of its convex hull, respectively. The polyhedron X_f(A) has
a unique maximal bounded face Xf(.A), of dimension 2n; + ny — 3, there called the polytope
of pointed pseudo-triangulations of A.

Our main new ingredient is that we consider “marked” non-crossing graphs, meaning non-
crossing graphs together with the specification of a subset of their pointed vertices. With
similar ideas but with n extra coordinates for the n possible marks, we get a polyhedron
Y} (A) of dimension 3n — 3 with a unique maximal bounded face Y} (A) of dimension 3n; +
np — 3. The face F in the statement of Theorem 2.5 is precisely the polytope X ;(.A), which
arises by setting to 0 the n new coordinates, corresponding to marks.

The technical tools both in our construction and in [5] are pseudo-triangulations of
planar point sets and their relation to structural rigidity of non-crossing graphs. Pseudo-

*Research partially supported by project BMF2001-1153 of Spanish Direccion General de Investigacion
Cientifica.

73

triangulations, first introduced by Pocchiola and Vegter around 1995 (see [3]), have by now
been used in many Computational Geometry applications, among them visibility [4, 3], ray
shooting [1], and kinetic data structures [2]. Streinu [6] introduced the minimum or pointed
pseudo-triangulations, and used them to prove the Carpenter’s Rule Theorem. Pointed
pseudo-triangulations turn out to coincide with the maximal non-crossing and pointed
graphs; that is to say, with the vertices of the polytope Xf(A). Our method extends that
construction and Y} (A) is the polytope of pseudo-triangulations, since its vertices correspond
to all pseudo-triangulations of A.

2 Overview of the method and results

In the sequel we assume our point set A to be in general position, although the results are
proved in the full paper for point sets in degenerate position as well. Let n; and n; be
the number of points of A4 in the interior and boundary of conv(A), respectively, and let
n =n; +n,. We define:

Definition 2.1 (Flips in pseudo-triangulations) Let T be a pseudo-triangulation of A.
We call flips in T the following three types of operations, all producing pseudo-triangulations.

- (Deletion flip). The removal of an edge e € T, if T'\ e is a pseudo-triangulation.
- (Insertion flip). The insertion of an edge e ¢ T', if T' U e is a pseudo-triangulation.

- (Diagonal flip). The exchange of an edge e € T, if T'\ e is not a pseudo-triangulation,
for the unique edge e’ such that (T"\ e) U e’ is a pseudo-triangulation.

The graph of pseudo-triangulations of A has as vertices all the pseudo-triangulations of A
and as edges all flips of any of the types.

Proposition 2.2 The graph of pseudo-triangulations of A is connected and regular of degree
3n;+ny —3=3n—2n, — 3.

As happened with pointed pseudo-triangulations, Proposition 2.2 suggests that the graph
of pseudo-triangulations of A may be the skeleton of a simple polytope of dimension 3n; +
ny—3. As a step towards this result we look at what the face poset of such a polytope should
be. The polytope being simple means that we want to regard each pseudo-triangulation 7’
as the upper bound element in a Boolean poset of order 3n — 3 — 2ny. This number equals
the number of interior edges plus interior pointed vertices in T

Definition 2.3 A marked graph on A is a geometric graph with vertex set A together with
a subset of its vertices, that we call “marked”. We call a marked graph non-crossing if it is
non-crossing as a graph and marks arise only in pointed vertices.

We call a non-crossing marked graph fully-marked if it is marked at all pointed ver-
tices. If, in addition, it is a pseudo-triangulation, then we call it a fully-marked pseudo-
triangulation, abbreviated as f.m.p.t.

74

We start defining a linear cone Y, (A) by one inequality for each possible edge and each
n+1

point of A. Its ("}') facets are then translated using the entries of a vector f in R(":)

to produce a polyhedron Y;(A) which has as unique maximal bounded face a polytope

Y7 (A). Our proof goes by analyzing the necessary and sufficient conditions for f to produce

a polytope with the desired properties. We get the next result, where flips in fully-marked

pseudo-triangulations are defined in the natural way from those in pseudo-triangulations:

Theorem 2.4 (The polyhedron of marked non-crossing graphs) If f is a valid choice
of parameters, then there is a simple polyhedron Y; of dimension 3n — 3 whose face poset
equals (the opposite of) the poset of non-crossing marked graphs on A. In particular:

(a) Vertices of the polyhedron are in 1-to-1 correspondence with fully-marked pseudo-
triangulations of A.

(b) Bounded edges correspond to flips of interior edges or marks in fully-marked pseudo-
triangulations, i.e., to fully-marked pseudo-triangulations with one interior edge or
mark removed.

(c) Extreme rays correspond to fully-marked pseudo-triangulations with one convex hull
edge or mark removed.

We prove valid choices of f to be the interior of a convex polyhedron defined by (7)
strict inequalities and give an explicit choice. Then, from the existence of a valid f and the
Theorem above, the following result is concluded:

Theorem 2.5 (The polytope of all pseudo-triangulations) Let Y;(A) be the face of
Y (A) defined turning into equalities the equations which correspond to convex hull edges or
convex hull points of A, and assume f to be a valid choice. Then:

1. Yy (A) is a simple polytope of dimension 3n — 2n, — 3 whose 1-skeleton is the graph of
pseudo-triangulations of A. (In particular, Yi(A) is the unique mazimal bounded face

of Y1 (A)).

2. Let F be the face of Yy (A) defined by turning into equalities the equations corresponding
to interior points. Then, the complement of the star of F' in the proper face-poset of
Y;(A) equals the poset of non-crossing graphs on A which use all the convex hull edges.

This result, which proves the claims advanced in the introduction, deserves some words
of explanation:

- Since convex hull edges are irrelevant to crossingness, the poset of all non-crossing
graphs on A is the direct product of the poset in the statement and a Boolean poset
of rank nyp.

- The equality of posets in Theorem 2.5.2 reverses inclusions. Maximal non-crossing
graphs (triangulations of A) correspond to minimal faces (vertices of Yy (A)).

75

- By “proper” face poset of a polytope we mean that the polytope itself is not considered
a face. We remind the reader that the star of a face F' is the union of all the facets
(maximal proper faces) containing F'.

- We give a fully explicit facet description of Y¢(A). It lives in R*" and is defined by
3 linear equalities and () + n linear inequalities in which those 2n; corresponding to
convex hull edges and vertices of A have to be turned into equalities, thus providing
an affine subspace of dimension 3n — 3 — 2n;, as stated. The face F' is the one obtained
turning into equalities also the n; equations corresponding to interior points.

It is worth mentioning that our results have some rigid-theoretic consequences. Namely:

Theorem 2.6 Let T be a pseudo-triangulation of a planar point set A. Let G be its under-
lying graph. Then:

1. G is infinitesimally rigid, hence rigid and generically rigid.

2. There are at least 2k + 3l edges of T incident to any subset of k pointed plus | non-
pointed vertices of T .

If the pseudo-triangulation is pointed, then it has 2n — 3 edges and parts (2) is just the
Laman characterization of isostatic graphs in the plane as graphs with 2n — 3 edges with
every k vertices incident to at least 2k edges. In particular, Theorem 2.6 generalizes Ileana
Streinu’s result [6] that pointed pseudo-triangulations are isostatic graphs.

References

[1] M. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar subdivisions
via balanced geodesic triangulations. J. Algorithms, 23 (1997) 51-73.

[2] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for simple polygons.
International Journal of Computational Geometry and Applications, 12:3-27, 2002.

[3] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via pseudo-
triangulations. Discrete and Computational Geometry, 16:419-453, 1996.

[4] M. Pocchiola and G. Vegter. The visibility complex. Int. J. Comput. Geom. Appl., 6:279-308,
1996.

[5] G. Rote, F. Santos, and I. Streinu. Expansive motions and the polytope of pointed pseudo-
triangulations, preprint 2002, http://arXiv.org/abs/math.C0/0206027. To appear in Dis-
crete and Computational Geometry — The Goodman-Pollack Festschrift, (B. Aronov, S. Basu,
J. Pach, M. Sharir, eds), Algorithms and Combinatorics, Springer Verlag, Berlin.

[6] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning.
In Proc. 41st Ann. Symp. on Found. of Computer Science (FOCS 2000), Redondo Beach,
California, pages 443-453, 2000.

76

Affine representations of abstract convex
geometries

Kenji Kashiwabara*

Abstract

A convex geometry is a combinatorial abstract
model introduced by Edelman and Jamison
which captures a combinatorial essence of “con-
vexity” shared by some structures including fi-
nite point sets, partially ordered sets, trees,
rooted graphs. In this paper, we introduce a
generalized convex shelling, and we show that
any convex geometry can be represented as a
generalized convex shelling. This is “the repre-
sentation theorem for convex geometries” simi-
lar to “the representation theorem for oriented
matroids” by Folkman and Lawrence. An im-
portant feature is that our representation the-
orem is affine-geometric while that for oriented
matroids is topological. Namely our representa-
tion theorem indicates the intrinsic simplicity of
convex geometries.

1 Introduction

Some abstract models of geometric concepts are
known to be useful. For example, a matroid is
considered as the abstraction of linear depen-
dence and plays important roles in finite geom-
etry, coding theory, combinatorial optimization
and so on [11]. Another example is an oriented
matroid, which is considered as the abstraction
of affine (and linear) dependence and which cap-

*Department of Systems Science, Graduate School
of Arts and Sciences, The University of Tokyo, 3-8-
1, Komaba, Meguro, Tokyo, 153-8902, Japan. E-mail:
kashiwa@graco.c.u-tokyo.ac.jp.

TDepartment of Systems Science, Graduate School
of Arts and Sciences, The University of Tokyo, 3-8-
1, Komaba, Meguro, Tokyo, 153-8902, Japan. E-mail:
nakamura@klee.c.u-tokyo.ac.jp.

fInstitute of Theoretical Computer Science, De-
partment of Computer Science, ETH Ziirich, ETH
Zentrum, CH-8092, Ziirich, Switzerland. E-mail:
okamotoy@inf.ethz.ch. Supported by the Berlin-Ziirich
Joint Graduate Program “Combinatorics, Geometry,
and Computation” (CGC), financed by ETH Ziirich and
the German Science Foundation (DFG).

Masataka Nakamural

Yoshio Okamoto?

tures essences of convex polytopes, point con-
figurations, hyperplane arrangements and so on
[1]. Oriented matroids play an important role
in theory of convex polytopes, discrete geom-
etry, computational geometry and so on, and
they are known to be quite powerful models.

One of the most important theorems in ori-
ented matroid theory is the “topological repre-
sentation theorem” by Folkman and Lawrence
[7]. The topological representation theorem
states that: any simple oriented matroid can
be represented as a “pseudohyperplane arrange-
ment.” So, in principle, when we investigate an
oriented matroid, we only have to look at the
corresponding pseudohyperplane arrangement.
A recent study by Swartz [12] revealed the topo-
logical representation of matroids, saying that
every simple matroid can be represented as the
arrangement of homotopy spheres.

In this paper, we will study yet another ex-
ample of combinatorial abstraction of geometric
concepts, namely a convex geometry. A convex
geometry was introduced by Edelman and Jami-
son [6] as an abstraction of convexity, and it can
be seen as a “dual” (or a “polar” or a “comple-
ment”) of an antimatroid [4]. A convex geom-
etry has been appearing in papers not only on
discrete geometry or combinatorics but also on
social choice theory ([10] for example) or math-
ematical psychology ([5] for a detailed treat-
ment). Also, convex geometries form a greedily
solvable special case of a certain optimization
problem [2].

In this paper, we will show a representa-
tion theorem for convex geometries. The the-
orem says that any convex geometry can be
represented as a “generalized convex shelling.”
Since a generalized convex shelling is defined
in a purely affine-geometric manner, this the-
orem gives an affine-geometric representation of
a convex geometry. Since neither an affine-
geometric representation theorem for matroids
nor for oriented matroids is known, our affine-

7

geometric representation theorem for convex ge-
ometries indicates the intrinsic simplicity of con-
vex geometries. As well as the topological rep-
resentation theorem for oriented matroids plays
a significant role in theory of oriented matroids,
our theorem will play a similar role in theory of
convex geometries.

2 Convex geometries and
the representation theo-
rem

In this section, we will give a definition of a con-
vex geometry, which was introduced by Edel-
man and Jamison [6], and will state our theorem
precisely.

Let E be a nonempty finite set. A family £
of subsets of E is called a conver geometry on
E if L satisfies the following three axioms:

(L1) 0 e £ and E € L;
(L2) if X,Y € £, then X NY € L;

(L3) if X € £\ {E} then there exists some
e € E\ X such that X U {e} € L.

Two convex geometries £1 on E; and L5 on
E, are isomorphic if there exists a bijection
1 : By — E5 such that ¥(X) € L, if and only if
X e L.

Let us look at some examples of convex ge-
ometries.

Example 2.1 (convex shelling). Let @) be a
finite set of points in R%, and define

L={XCQ:conv(X)NQ =X}

Then, we can see that £ is a convex geometry on
@, and we say this kind of convex geometries is a
convex shelling. A convex geometry isomorphic
to some convex shelling on a finite point set Q)
is also called a convex shelling.

Example 2.2 (poset shelling). Let E be a
partially ordered set endowed with a partial or-
der =<, and define £L = {X C EF :e € X and
f S eimply f € X}. Then we can see that L is
a convex geometry on E, and we say this kind
of convex geometries is a poset shelling.

Example 2.3 (tree shelling). Let V be the
vertex set of a (graph-theoretic) tree T, and de-
fine L={X CV: u,v € X = a unique path

connecting u and v only uses vertices in X}.
Then we can see that £ is a convex geometry on
V', and we say this kind of convex geometries is
a tree shelling.

Example 2.4 (graph search). Let G =(V,E)
be a rooted connected graph with root r € V,
and define L ={X CV\{r}:veV\X =>
v can be reached from r by a path only using
vertices in V' '\ X}. Then we can see that £ is
a convex geometry on V' \ {r}, and we say this
kind of convex geometries is a graph search.

For other various examples of convex geome-
tries, see [6] or [9].

Here, we will give yet another example of con-
vex geometries, which was not given explicitly
before.

Example 2.5 (generalized convex
shelling). Let P and () be finite point
sets in RY. Assume that conv(P) N Q = () and
particularly that P N Q) = . Then define

L={XCQ:conv(XUP)NQ = X}.

We say L is the generalized convex shelling on
Q with respect to P. If P = {, this just gives
a convex shelling. So, as the name indicates, a
generalized convex shelling is a generalization of
a convex shelling. While at first sight it is not
so obvious that a generalized convex shelling is
indeed a convex geometry, that can be shown.
(Here we omit the proof.)

Our main theorem will be as follows. This
says that the class of convex geometries co-
incides with the class of generalized convex
shellings, although convex geometries arise from
diverse objects as we saw.

Theorem 2.1. Any convexr geometry is isomor-
phic to some generalized convex shelling.

The main concern of this paper is the proof of
Theorem 2.1. In the next section, for the proof
of Theorem 2.1, we will construct finite sets Py
and Qg of points from a given convex geometry
L so that £ can be isomorphic to the generalized
convex shelling on Q¢ with respect to Fj.

3 Construction of point sets

For our construction, we will use rooted circuits
of a convex geometry. So at the beginning of
this section, we will introduce rooted circuits.

78

A rooted circuit of a convex geometry was orig-
inally introduced by Korte and Lovéasz [8].

In order to define a rooted circuit, we need
some more technical words. For a convex ge-
ometry £ on E and A C E, the trace of L on
A is defined as Tr(£,4) = {XNA: X € L}.
A rooted set is a pair (X,r) of a set X and an
element 7 of X. A rooted subset of E is a rooted
set (X,r) such that X C E.

Here comes the definition of a rooted circuit.
Let £ be a convex geometry on E. A rooted
subset (C,r) of E is called a rooted circuit of
L if Tr(L,C) =29\ {C \ {r}}. We denote the
family of rooted circuits of a convex geometry £
by C(L).

Now we are ready for our construction. We
will construct point sets Py and Qg from a given
convex geometry £ on E so that £ can be iso-
morphic to the generalized convex shelling on
Qo with respect to Fp.

Let us say that |E| = n. We will take the (n—
1)-dimensional space R*~!. For each element
e € E, we take a point g(e) € R*™! such that
the points g(e) € R*~! (e € E) can be affinely
independent. Namely, it should hold that for
any {pe € R:e € E} with) ppe =0,

Zpeq(e)zﬂ = pe=0foralle€E.
eckE

(So conv({q(e) e € E})is an (n — 1)
dimensional simplex.) Also for each rooted cir-
cuit (C,r) € C(L) of L we put a point p(C,r) €
R ! determined as

p(C,r) =[Cla(r) = > qle).

ecC\{r}

(1)

Note that g(r) lies in the relative interior of
conv({g(e) : e € C'\ {r}} U {p(C,r)}) for any
rooted circuit (C,r) € C(L). In this way, we
have set up |E| + |C(£)| points in R*~!.

Let Py = {p(C,r) : (C,r) € C(£)} and Qo =
{g(e) : e € E}. Then PoN Qo = . Now our
claim is as follows.

Claim 3.1. For Py and Qg constructed above,
the generalized convex shelling on Qo with re-
spect to Py is isomorphic to L.

This claim proves Theorem 2.1.

To illustrate the construction, we will look at
examples for n = 3. For n = 3 we have six
non-isomorphic convex geometries. Let E =
{1,2,3} for example. Below we enumerate all

of the six non-isomorphic convex geometries
on {1,2,3} together with their rooted circuits.
£y =223 and C(L£1) = 0; L2 = £,)\ {{1,3}}
and C(Lz) = {({1,2,3},2)}; L3 = L2\ {{3}}
and C(L3) = {({2,3},2)}; L4 = L3\ {{2,3}}
and C('C4) = {({173}71)7({273}72)}7 £5 =
L3\ {{1}} and C(L5) = {({1,2},2),({2,3},2) };
Ls = L4\ {{2}} and C(Ls) = {({1,2},1),
({1,3},1),({2,3},2)}-

Figure 1 depicts the construction of the point
sets for these examples.

4 Idea of the proof

Because of the limitation of the pages, we will
just describe an idea of the proof of Claim 3.1.
The entire proof will appear in the full-paper
version. In this section, any proof will be omit-
ted.

Let £' be the generalized convex shelling on
Qo with respect to Fy. The first thing that
we should care about is that the constructed
point sets Py and g actually satisfy the precon-
dition of generalized convex shellings, namely
conv(Py) N Qo = B. In fact, we can show that
this is the case.

Next, we want to establish a bijection v from
E to Q¢ such that ¢ can be an isomorphism
between £ and £'. As it is natural, we will set
Y(e) = g(e) for each e € E. We want to show
that ¢ is an expected isomorphism between £
and L'.

To show that, we will use a result by Dietrich
[3, 4] which is a characterization of a convex ge-
ometry in terms of the family of rooted circuits.
Therefore, in order to show that ¢ is an iso-
morphism, we will show that ¢ maps a rooted
circuit of £ to a rooted circuit of £’ bijectively.
From the characterization by Dietrich [3, 4], we
can find that it suffices to show the following
two lemmas for our purpose.

Lemma 4.1. 1. In the setting above, for any
rooted circuit (C,r) € C(L), there exists
(C',r") € C(L') such that C' C ¢(C) and
' =Y(r).

2. In the setting above, for any rooted circuit
(C',r") € C(L'"), there exists (C,r) € C(L)
such that C C ~H(C") and r = ~1(r").

We need more facts to prove Lemma 4.1. Ac-
tually, for a proof of Lemma 4.1.2 we use the
concept of a closure operator which appears

79

q(1) q(1)
bq(:&) ///
q(2) ¢(2)

/

7

q(1)
bq(s) Dq(s)
_al2)

;o p({2,3},2)
p({1,2,3},2)
¢

p({1,3}, 1) p({1,3}, 1) Tp({172}7]-)

\;Izl\) q(1) \zl(lj :

a(3) I}‘ a(3) a(3)

L9€2) _ae2) a@)

p({2,3},2) p({2,3},2) i p({2,3},2)
p({1,2},2)

Figure 1: Construction of point sets for n = 3.

in the theory of convex geometries (or closure
spaces more generally).

Acknowledgements

The authors are grateful to Masahiro Hachimori
and Tadashi Sakuma for discussion and useful
comments.

References

[1]

A. Bjorner, M. Las Vergnas, B. Sturmfels,
N. White and G. Ziegler: Oriented Ma-
troids (2nd Edition). Cambridge University
Press, Cambridge, 1999.

E.A. Boyd and U. Faigle: An algorithmic
characterization of antimatroids. Discrete
Applied Mathematics 28, 1990, 197-205.

B.L. Dietrich: A circuit set characteriza-
tion of antimatroids. Journal of Combina-
torial Theory Series B 43, 1987, 314-321.

B.L. Dietrich: Matroids and antimatroids
— a survey. Discrete Mathematics 78,
1989, 223-237.

J.-P. Doignon and J.-C. Falmagne: Knowl-
edge spaces. Springer Verlag, Berlin, 1999.

80

[6]

[10]

[11]

[12]

P.H. Edelman and R.E. Jamison: The the-
ory of convex geometries. Geometriae Ded-
icata 19, 1985, 247-270.

J. Folkman and J. Lawrence: Oriented ma-
troids. Journal of Combinatorial Theory
Series B 25, 1978, 199-235.

B. Korte and L. Lovasz: Shelling struc-
tures, convexity, and a happy end. In: B.
Bollébas, ed., Graph Theory and Combina-
torics: Proceedings of the Cambridge Com-
binatorial Conference in Honour of Paul
Erdés, Academic Press, London New York
San Francisco, 1984, 219-232.

B. Korte, L. Lovasz and R. Schrader: Gree-
doids. Springer-Verlag, Berlin Heidelberg,
1991.

G.A. Koshevoy: Choice functions and ab-
stract convex geometries. Mathematical So-
cial Sciences 38, 1999, 35—44.

J. Oxley: Matroid Theory. Oxford Univer-
sity Press, New York, 1992.

E. Swartz: Topological representations of
matroids. Preprint,
arXiv:math.C0O /0208157, 2002.

Maximum subsets in Euclidean position
in Euclidean 2-orbifolds and the sphere

M. Abellanas*, C. Cortés!, G. Herndndez*,
A. Mérquez' and J. Valenzuelat

Abstract

Intuitively, a set of sites on a surface is in Euclidean position, if points are so close each other
that planar algorithms can be easily adapted in order to solve classical problems of Computational
Geometry. In this work we focus in a very relevant class of metric surfaces, the Euclidean 2-
orbifolds in addition to the sphere. To seek for maximum sets (in terms of cardinal) in Euclidean
position of a given set of sites is, in most of these surfaces, equivalent to compute the maximum
depth of an arrangement of convex sets determined by the geometry of the surface. We present
algorithms for finding either one or all the maximum subsets as well as the number of such subsets
and their minimum cardinal and show that this problem is equivalent to the search of the maximum
clique for a natural class of geometric graphs generated from these surfaces.

1 Introduction. Euclidean position

Most people along the human history have believed in a flat earth. Even nowadays there exit
persons that still hold the flatness of the world. This is because most of our daily experience
takes place in a restricted region of a sphere-like surface, so that there are no significant errors
if it is considered as a plane. This idea can be easily extended to the Computational Geometry
context, where in multiple applications it is assumed that if a given data set is constrained to a
small portion of a surface it presents a planar behavior.

The notion of Euclidean position was introduced in [7] for the sphere, the cylinder, the cone,
and the torus, and it was extended in [4] to a wider class of surfaces, the Euclidean 2-orbifods,
where methods for determining whether or not a point set is in Euclidean position are developed
(see first column in Table 1). In this paper we extend those previous works and focus on finding
the subsets with highest cardinal in Euclidean position either on an Euclidean 2-orbifold or on the
sphere.

As it is known, any Euclidean 2-orbifolds is obtained as a quotient space ¢ : R* — IR? /T ~85,
being ¢ the quotient map and I' a discrete group of planar motions, and where an equivalent class
(the orbit) of a point of IR? is given by all its images by elements of I'. The four locally Euclidean
surfaces (the cylinder, the twisted cylinder, the torus and the Klein bottle) and others well-known
surfaces as the Moebius strip or the projective plane are 2-orbifolds. A more complete study of
them can be found in [8].

Given two points, X and Y, the geodesics joining them in the quotient metric correspond to
straight-line segments matching one point of the orbit of X with all the ones of the orbit of Y.
The shortest of these line segments will be called the segment between X and Y. On the sphere,

*Dpto. de Matematica Aplicada, Fac. de Informadtica, Univ. Politécnica de Madrid,
{mabellanas,gregorio}@fi.upm.es. Partially supported by projects MCyT TIC2002-04486-C02-01 and CAM
07T/0014/2001

TDpto. de Matemaética Aplicada I, Univ. de Sevilla, {ccortes,almar}@us.es. Partially supported by MCyT
project BFM2001-2474

iDpto. de Matemdticas, Univ. de Extremadura, jesusv@unex.es. Partially supported by MCyT project
BFM2001-2474

81

the segment corresponds to the shortest geodesic joining the points. The distance between X and
Y is the length of the segment joining them.

To get a simple representation of an Euclidean 2-orbifold, a very useful tool is the fundamental
domain: a closed region in the plane containing one element of each orbit, that is unique except
for the points of the boundary (double points). If we delete all double points of a fundamental
domain and consider its image by ¢, we obtain what we call a fundamental region.

A set of sites P either on a 2-orbifold or the sphere is said to be in Fuclidean position if there
exists a fundamental region so that all segments joining points of P (the clique generated by P)
are contained inside it (a hemisphere in the case of the sphere).

A subset @ of P is a maximum subset of P for the Euclidean position (MSEP for short) if it
is in Euclidean position and there is no other higher cardinal subset having that property. In this
work we develop several methods to find either one or all the MSEPs of a given set of sites both
on the Euclidean 2-orbifolds and the sphere and determine how large all means. Complexities of
these procedures are summarized in Table 1 together with the minimum number of points of P
that can be assured to be in Euclidean position on each surface.

Given a set P on an Euclidean 2-orbifold or the sphere, the segment graph of P is the geometric
graph having the points of its orbit as vertices, and as edges all the possible segments, that coincides
with the image by ¢! of the complete graph with nodes in P. It is easy to realize the following
result:

Lemma 1 Q C P is in Fuclidean position if and only if the connected components of the segment
graph of Q) are cliques.

This turns our problem to the searching of cliques in segment graphs, a problem that is known
to be NP-hard for general graphs [3, 6]. However, for segment graphs on the sphere and most of
2-orbifolds (the ones without glide reflections) we prove that this can be solved in polynomial time.
This is due to the geometric properties of these surfaces which allow to transform this problem
to the one of computing the region of maximum depth in an arrangement of convex polygons (or
maximum circles in the sphere).

We will make use of known algorithms for computing the maximum depth of an arrangement
of convex polygons [5, 2] as well as the ones for determining the halfspace depth of a point in
both the plane [1] and the space [9]. This reasoning does not work properly in surfaces with glide
reflections, where no polynomial time algorithms have been found at once. In fact, sets with O(2")
MSEPs can be constructed in these surfaces.

2 Surfaces without glide reflections

It is known a set of sites P on the cone, the cylinder, the torus, or the sphere is in Euclidean
position if and only if it is contained in certain sets whose shape depend on the surface considered
(between opposite generatrices of the cylinder or the cone; a quadrant -the region between two
opposite parallels and two opposite meridians- of the flat torus; or an hemisphere of the sphere).
By taking the counter image by the quotient map of these sets in the plane, it can be proven [7, 4]
that P is in Euclidean position if and only if its orbit is contained in some particular convex sets
(according on the surface considered) in the plane.

Thus, the searching of MSEPs turns to the optimal placement problem of a certain convex
set containing the maximum number of points of ¢~ !(P). This can be solved by computing the
maximum depth of the arrangement of sets centered at the points of the orbit of P, so the next
result holds:

Theorem 1 Let S =]RZ/F be an Euclidean 2-orbifold (respectively the sphere), with ' a discrete
group of motions containing no glide reflections, and a set of sites P on S. Then it can be
constructed an arrangement of convex polygons (respect. mazimum circles) such as any region of
the arrangement with mazimum depth is associated to a MSEP of P.

82

The region with maximum depth in an arrangement of n convex sets can be computed in
O(nklogn) time, where k is the depth of the arrangement, for translations of a fixed convex set
in the plane [2]; or, as it is noted in [5], by modifying the algorithm given in [10], that provides
a computational time of O(n%/2logn) for an arrangement of isotetic hipercubes in R?. These
algorithms together with Theorem 1 give rise to the following assertion:

Corolary 1 A mazimal clique in a segment graph generated from a set in a 2-orbifold without
glide reflection or the sphere can be found in polynomial time.

The convex polygons cited in Theorem 1 depend on the 2-orbifold considered, and it is
e a strip for sets given on the cylinder,

e an angular sector with vertex on the center of the rotation for the cone,

an isotetic rectangle for the flat torus (generated from two orthogonal translations) and the
pillow-like surfaces (generated from rotations),

a hexagon for the skew torus (non-orthogonal translations), or

an isotetic cube for the Pillow (generated by two 7 radians rotations and a translation or by
four 7 radians rotations).

The time needed to compute the maximum depth of arrangements of such sets are summarized
in second column of Table 1. The optimum for the cylinder and the cone are due to the MSEP
search in these surfaces can be connected to the halspace depth problem; that is, to determine the
halfspace, whose boundary contains a fixed point (the center of the circumference in our case),
having less points of a given set [1]. This also assures the optimum for the flat torus and the
pillow-like surfaces.

Note as the angle between the generating translations in the skew torus cause a change of
the polygon considered that increases the computing time. This O(n!-®logn) time improves the
O(nklogn) time given in [2] for arrangement whose depth k is greater than /n.

In spite of what happen on the 2-orbifolds, the searching of a MSEP on the sphere can be done
by computing the maximum depth region of an arrangement of maximum circles on the sphere
itself. This problem is equivalent either to determine the subset of highest cardinal of a point set
in R?® whose convex hull does not contain a fixed point (the center of the sphere) or to compute
the halfspace depth of the center, and improves the O(n? logn) time given in [9].

Theorem 2 Given a set of n sites on R>, the halspace depth of a given point can be computed in
O(n?) time.

Finally, in Table 1 are also listed the number of MSEPs on each surface and the time necessary
to find all of them, together with their minimum cardinal.

3 Surfaces with glide reflections

If a glide reflection is involved, there is not a unique region G such as a set is in Euclidean position
if and only if it is contained in G. 2-orbifolds generated by this motion are non-orientables, and
it includes the Moebius strip, the Klein bottle or the projective plane. In this surfaces it is not
possible to make use of Theorem 1. If fact, opposite the other 2-orbifolds, there can be constructed
sets with O(2") MSEPs, and ©(2") time is required to report all of them. We are actually working
in determining if it is possible to find one MSEPs (and as a consequence, a clique in the segment
graph) in polynomial time.

83

4 Conclusions and open problems

Problem we have worked on are summarized in Table 1; computing either one or all MSEPs in
Euclidean position and giving bounds for the number of such sets and for the minimum number
of points that take part of any of them.

Determine Find a Num. of Find all | Min. num.
[4] max. set max. sets | max. sets | of points

Cylinder O(n) O(nlogn) O(n) O(nlogn) n/2
Cone ©(n) O(nlogn) O(n) O(nlogn) n/2
Torus O(n) O(nlogn) O(n?) 0(n?) n/4
Skew Torus O(n) O(n'®logn) O(n?) 0(n?) n/4
Pillow O(n) O(n'-logn) O(n?) 0(n?) n/2
Pillow-like
surfaces O(n) O(nlogn) O(n?) 0(n?) n/2
Surfaces with
glide reflections | O(nlogn) ? o(2m) o(2m) n/4
Sphere O(n) O(n?) O(n?) 0(n?) n/2

Table 1: Scheme of problems and the current cost of solutions.

References

[1] G. Aloupis, C. Cortés, F. Gémez, M. Soss, and G. Toussaint. Lower bounds for computing
statistical depth. Computational Statistics and Data Analysis, 40:223-229, 2002.

[2] G. Barequet, M. Dickerson, and P. Pau. Translating a convex polygon to containn a maximum
number of points. Computational Geometry: Theory and Applications, 8:167-179, 1997.

[3] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem.
In Handbook of Combinatorial Optimization., Supplement volume A, pages 1-74. Kluwer Aca-
demic Publisher, 1999.

[4] C. Cortés, A. Marquez, and J. Valenzuela. Euclidean position in 2-orbifolds. In 18th European
Workshop in Computational Geometry, April 2002.

[5] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Dis-
crete Computational Geometry, 11:321-350, 1994.

[6] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman, 1979.

[7] C.I. Grima and A. Marquez. Computational Geometry on Surfaces. Kluwer Academic Pub-
lisher, 2001.

[8] V. V. Nikulin and I. R. Shafarevich. Geometries and Groups. Springer Series in Soviet Math-
ematics. Springer, Berlin, 1987.

[9] P. J. Rousseeuw and A. Struyf. Computing location depth and regression depth in higher
dimensions. Statistics and Computing, 8:193-203, 1998.

[10] M. H. Overmars and C. Yap. New upper bounds in Klee’s measure problem. SIAM J.
Computing, 20:1034-1045, 1991.

84

Optimal Pants Decompositions
and Shortest Freely Homotopic Loops
on an Orientable Surface

Eric Colin de Verdiere*

1 Introduction

Let M be a compact orientable combinatorial
surface of genus g with b boundaries. A pants
decomposition of M is a maximal set of pairwise
disjoint, non-isotopic, essential loops on M; a
loop being essential if it is simple and neither
contractible nor homotopic to a boundary of M.
A pants decomposition is made of 3g—3+bloops
and cuts M into pairs of pants, i.e., spheres with
three boundaries (see [4]).

We describe a conceptually simple, polyno-
mial, iterative scheme which takes a given pants
decomposition and outputs a shorter homotopic
pants decomposition. We prove that, at the end
of the process, each loop is a shortest loop in its
homotopy class (in this paper, we consider ho-
motopy of loops without basepoint, i.e., free ho-
motopy). In particular, the resulting decompo-
sition is optimal in the sense that it is as short as
possible among all homotopic decompositions.

Furthermore, given a simple, essential loop ¥,
it is not difficult to extend ¢ to a pants decom-
position of M (see [3]). This decomposition,
after optimization, contains a shortest loop ho-
motopic to £ which is simple. Even the existence
of such a simple loop is non-obvious.

The problem of optimizing a pants decompo-
sition was raised in the conclusion of [3]; to our
knowledge, we present the first algorithm which
solves it. It also somehow extends [5] to more
general surfaces. This is a natural extension of
our former paper [1] where we treat the case
of optimal simple loops in a given class of ho-
motopy with fixed basepoint as opposed to free
homotopy.

I’Ecole normale
Paris, France.

*Laboratoire d’informatique de
supérieure, UMR 8548 (CNRS),
Eric.Colin.de.VerdiereQens.fr

fLaboratoire TRCOM-SIC, UMR 6615 (CNRS),
Poitiers, France. Francis.Lazarus@sic.univ-
poitiers.fr

85

Francis Lazarus’

2 Framework and Result

The framework we use in this paper is very close
to the one used in [1], see this paper for details.
The surface M is assumed to be a polyhedral
2-manifold, whose edges have positive weights.
Let G be the vertex-edge graph of M, and G*
be its dual (embedded into M). We consider
sets of disjoint, simple, piecewise linear (PL)
curves drawn on M that intersect G* in an ad-
missible way (i.e., the intersections are generic).
Throughout this paper, we always assume ad-
missibility. If a curve crosses the edges ey, ..., e}
of G*, then its length is defined to be the sum of
the weights of e1,...,eg. This notion of length
coincides with the usual length if we retract all
curves on G.

Let s be a pants decomposition of M to be
optimized'. To simplify the computation and
the proof of correctness, we first augment s
to form a doubled pants decomposition, which
we call s. Is is obtained by taking a copy of
each loop in s and of each boundary? of M,
slightly translated, in the same homotopy class,
such that s is still a set of pairwise disjoint sim-
ple loops. s = (s1,...,sn) is thus composed of
N = 69—6+3bloops. A loop of s or a boundary
of M and its translated copy are called twins.
For a loop s; in s, the connected component of
M\ {s\ s;} that contains s; is a pair of pants,
and one of its three boundaries is the twin of s;.
We note P; this pair of pants.

Definition 1 An Elementary Step f;(s) con-
sists in replacing the jth loop s; by a shortest
simple homotopic loop in P;. A Main Step f(s)
is the application of f = fnofn—10...0fz0f1 to

n fact, we allow s to be a decomposition of M
with pairs of pants and annuli, as it must be the case if
M is a torus or a cylinder. This technicality does not
change anything for the rest of the paper.

2This to allow shortening of loops that would be ho-
motopic to a boundary.

s. These operations transform a doubled pants
decomposition into another one, keeping the ho-
motopy class of the decomposition.

Here is our main theorem:

Theorem 2 Let s° be a doubled pants decom-
position of M, and let s"*1 = f(s™). For some
m €N, s™ and s™t! have the same length and,
in this situation, s™ is a doubled pants decompo-
sition homotopic to s° made of loops which are
individually as short as possible among all loops
in their (free) homotopy class. In particular,
s™ is an optimal doubled pants decomposition

of M2

Since it is easy to extend a simple loop to a
pants decomposition, and since a pants decom-
position is made of simple loops, we have:

Corollary 3 Let ¢ be a simple loop in M.
There exists a simple loop ¢’ homotopic to (
which is as short as possible among all loops ho-
motopic to /.

The following section aims at proving The-
orem 2. Note that Lemma 7 explains how to
perform algorithmically the computations of f;.

3 Proof of Theorem 2

Let 7 be the projection from the universal cover
M of M onto M. In this section, we fix i €
[1, N]; let s be a doubled pants decomposition,
and let ¢; be a loop which is homotopic to s; and
as short as possible among all loops homotopic
to s;- We may assume that no lift of ¢; self-
intersects in M (see below for the definition of
a lift). This fact, which is not trivial, will be
used in the proof of Proposition 9. Our goal is
to prove that, after a finite number of steps, the
ith loop of the doubled pants decomposition has
the same length as t;.

3.1 Lifts and translations in M

Let ¢ be a loop on M. We view £ as a 1-periodic
mapping from R into M. A lift of £ is a mapping
{:R — M such that mol = £. A part of a lift ¢

3Remark. The proof of Theorem 2 extends to the
case where we consider the real length of PL loops drawn
on M (and not on its vertex-edge graph), provided that
the suitable definition of a crossing is used: we have
to take into account that two loops can partly overlap
without crossing.

86

is the restriction of £ to an interval of the form
[a,a +1).

Let /1 be a part of a lift /. Let v be a point
in M, and let 8 be a path from the source of ¢,
to v. Consider the target v' of the lift of 7(53)
starting at the target of ,. Tt is readily seen
that v’ does not depend on the path §, nor on
the part £; of £ chosen. We have 7(v) = 7 (v');
intuitively, v’ is the translated of v by £. We
define 7;(v) to be v'.

Let s; and sj be two twins of s. Let (s;?‘)o‘EN

be an enumeration of the lifts of s; in M. By 2,
Lemma 2.4], s; and s;; bound a cylinder in M.
It follows that, for each a € N, s§' is one bound-
ary of an infinite strip which contains no lift of
s in its interior, and is bounded from the other
side by a lift of s;:. We call s, this other bound-
ary.

Let j € [1, N]. For a lift #; of ¢;, 7, induces a
permutation o; of N as follows: the image by 77,
of s is also a lift of s;, which we call 5 (@) The
0;’s, which depend on #; and on the enumeration
of the lifts of s;, will remain fixed in the rest of
this paper.

3.2 Crossing words

Let A be the set of symbols of the form k% or
k* where k € [1,N] and o € N. The set A*
of words on A is the set of finite sequences of
elements in A. Let p be a path in M; p crosses
the lifts s (for £ € [I,N] and @ € N) at a
finite number of points. We walk along p and,
at each crossing encountered with a lift s of
s, we write the symbol k¢ or k%, according to
the orientation of the crossing (with respect to a
fixed orientation of M). The resulting element
of A* is called the crossing word of p with s, and
denoted by s/p.

Lemma 4 Let a' < a® be two real numbers
such that exactly one crossing occurs between
all lifts of s and t~i|[a1,a2)' For k = 1,2, let
U)k = S/tl’|[ak7ak+1).

If w' = j%w (resp. wy = j*.w), then w? =
w.775 (%) (resp. w? = w.j7 (¥),

Let w € A*. We define the relation ~ to be
the equivalence relation generated by j%.w ~
w.57(®) and 7*.w ~ w.7%(® (for any j and a).
Let [A*] be A* quotiented by the relation ~. If
w € A*, we denote by [w] its equivalence class
in [A*].

Let ¢} be a part of #;. It follows from the
previous lemma that [s/#}] does not depend on
t}; hence we define [s/#;] to be their common
equivalence class in [A*].

Let j € [1,N], and let [w] € [A*]. The j-
reductions of [w] are defined as follows. If w has
the form wyj®7®ws or wyj*j“ws,, then we say
that [w] j-reduces to [wyws]; if w has the form
2w, 77 or 7*w;j%(®) | then we also say that
[w] j-reduces to [w1]. Obviously, this definition
does not depend on the particular choice of the
word w in [w].

A reduction is a j-reduction for some j. [w]
is j-irreducible (resp. irreducible) if it can be
applied no j-reduction (resp. reduction).

Lemma and Definition 5 Let [w] € [A*].
There is only one j-irreducible (resp. irre-
ducible) element of [A*] which can be obtained
from [w] by successive j-reductions (resp. reduc-
tions). We define g;([w]) (resp. g([w]) to be this
word.

3.3 Reducibility of [s/1;]

Proposition 6 g([s/t;]) = &, where ¢ is the
class of the empty word in [A*].

Proor. Let s} be a loop homotopic to s;
and slightly translated such that it does not
cross any loop sg. Let §; and #; be the re-
strictions of s} and ¢; to [0,1]. There exists a
path S joining s;(0) to t;(0) such that the path
pi= B.ii.ﬁfl.ézl is a null-homotopic loop in M.
We subdivide p into four paths p1 = 3, p» = ¢;,
ps=pB7" and py = §; " Let p = p1.p2-ps-ps be
a lift of p such that ps is on ;.

It can be proved that s/p is a parenthesized
expression (it reduces to the empty word by suc-
cessive removals of subwords of the form j*7*
and 7%j%). Hence g([s/p]) = €.

p1 and 15371 are parts of lifts of 8, and 77, (1) is
equal to p; '. Hence, if the kth symbol of s/p;
is equal to j* (resp. J%), then the kth symbol
of s/p3 ! (which equals s/ps in reverse order) is
§95(@) (resp. 77i(). Since s/py is empty, it fol-
lows that g([s/p=]) = g([s/p]). The left handside
equals g([s/t;]) and the right handside equals .
[l

3.4 Uncrossing the loops

Lemma 7 Let r = f;j(s). r; is, in Pj, a short-
est loop homotopic to s;.

PrROOF (SKETCH). Let by, k = 1,2,3, be the
boundaries of P;, such that b; is homotopic to
sj. Let p1 (resp. p2) be a shortest path between
by and b3 (resp. by and bs); we can make these
paths simple and disjoint. Let £ be a shortest
loop homotopic to s; in P;, and ? be a lift of ¢
in the universal cover of P;j. By analyzing the
way { crosses the lifts of p; and p», we can prove
that we can change ¢ to a loop ¢, which is also
a shortest loop homotopic to s; in P;, but does
not cross p; and crosses py once.

Cut P; along p; and py; for each pair of ver-
tices corresponding to a single vertex of py be-
fore cutting, compute a shortest path whose
endpoints are this pair of vertices; take the
shortest of these shortest paths. By the preced-
ing paragraph, this path yields a shortest loop
homotopic to s; in Pj, and it is simple. As
a byproduct, this describes a way to compute

fi(s). O

Let r = fj(s). If k& # j, let ry be equal
to sf. To get an enumeration of the lifts of
rj, we proceed as follows. Let s;; be the twin
of s;. Note that r; and s; bound a cylinder
by [2, Lemma 2.4]. We let r$ to be the lift of
r; which bounds the lift of this cylinder whose
other boundary is s%. It follows that 77, (rf) is
a;(e@)

equal to r; (in other words, the permutation

o; remains unchanged).

Lemma 8 gj([T/fi]) = g;([s/t:]).

PROOF (SKETCH). Let [r/t;]; and [s/?;]; be
obtained by deleting j-symbols from [r/f;] and
[s/t;]. Since r and s only differ in their jth loop,
these two words are identical. Consider two con-
secutive symbols o1 and o3 in [u/t;];, where u
stands for either r or s. These two symbols
are replaced in [u/t;] by an expression ow;o2,
where w; is a word on j-symbols. We only need
to show that w; reduces (with parenthesized re-
ductions) to a same expression for v = r and
u = s. This obviously implies the lemma. The
proof uses the fact that uj (= s;) and u; bound
a cylinder in P;, and this cylinder is crossed by
no other loops of u. O

Proposition 9 We can replace t; by a loop t}
(homotopic to t;, no longer than t;, and such
that its lifts are simple) so that [r/t}] = g;([s/%:])
for some lift t'. of t..

Proor. By Lemma 8, we may only consider
the case where [r/t}] is j-reducible; this implies

87

that there is a disk D in M bounded by an arc
7% of a lift 7; of r;, and an arc 5 of #; with the
same endpoints a and b.

D intersects ; in a set of pairwise disjoint
arcs with endpoints on 74 (recall £; is simple).
Consider an innermost such arc #¢?, i.e., such
that it sustains a subarc ch-d of qub that does not
intersect ;.

If #¢¢ were shorter than F;-d,
r; as follows: in M, replace the part F;d of 7;
by a path with the same endpoints going along
¢4 and project it onto M. The resulting loop,
r;-, is shorter than r;; moreover, no lift of any
loop other than t; can cross D, so the projection
m(D) lies entirely in P;. It follows that r} is
homotopic in P; to r;, while being shorter; this
contradicts Lemma 7.

We modify #; as follows: replace the part £¢¢
of #; by a path with the same endpoints going
along Fj-d, on the other side of F;d (to remove the
two crossings). The projection ¢} of the resulting
path is a loop homotopic to t;, and no lift of
this new loop self-intersects in M. It cannot
be longer than ¢; by the preceding paragraph,
hence ¢} is a shortest loop homotopic to s; whose
lifts are simple. Moreover, [r/#] is deduced from
[r/t:] by a j-reduction. We finish the proof by
induction. [

we could shorten

3.5 Conclusion of the proof

Lemma 10 Assume t; does not cross any loop
of s; let P be the pair of pants delimited by s in
which t; is. Then one of the boundaries of P is
homotopic, in P, to t;.

PROOF. Omitted in this abstract. O

Lemma 11 Assume that [s/t;] = . Let r =
f2(s). Thenr; and its twin have the same length
as t;.

Proor. By Lemma 10, ¢; is inside a pair
of pants bounded by some s, which is either s;
or its twin. By Proposition 9, we may replace
t; by t; such that s’ := fr_1 o...0 fi(s) does
not cross t}, and (in fact) that ¢} is in a pair
of pants bounded by sj,. Hence, by Lemma 7,
the kth loop of fi(s) has the same length as ¢;.
After one more iteration of f the same is true
for the twin of the kth loop. O

PROOF OF THEOREM 2. Fix 4; let ¥ be a

shortest loop homotopic to s?. By Proposi-

tions 9 and 6, one can construct a sequence

88

(t?)nen of shortest homotopic loops such that
the length of [s™/t}] strictly decreases. Then
for some n, [s"/t?] = e. By Lemma 11, s}'t?
has the same length as t?. Hence the length of
s™ becomes stationary. It remains to prove that
the lengths remain unchanged once s™ and s"*!
have the same lengths. O

4 Complexity

We present a sketch of the complexity analysis
(which is similar to and simpler than the one
in [1]). Let n be the number of edges of M, g its
genus and b its number of boundaries. Let a be
the longest-to-shortest edge ratio of M. Let S
be a combinatorial doubled pants decomposition
of M composed of N = O(g+b) loops, and p be
the maximal multiplicity of any vertex of M in
a loop of S. Hence the number of edges of a loop
at the beginning of the algorithm is O(un), and,
since loops can only get shorter in length, their
maximal number of edges is O(aun). We can
prove that the lengths of the crossing words is
O((g +b)ap®n), and compute the time spent by
an Elementary Step, using Dijkstra’s algorithm
and the proof of Lemma 7. Finally:

Theorem 12 This algorithm computes an op-
timal pants decomposition homotopic to S in
O(p*a(g + b)?n3log pan) time.

References

[1] E. Colin de Verditre and F. Lazarus. Optimal system
of loops on an orientable surface. In IEEE Symp.
Found. Comput. Sci., pages 627-636, 2002.

[2] D. Epstein. Curves on 2-manifolds and isotopies.
Acta Mathematica, 115:83-107, 1966.

[3] J. Erickson and S. Har-Peled. Optimally cutting a
surface into a disk. In Proc. 18th Annu. ACM Symp.
Comput. Geom., pages 244-253, 2002.

[4] A. Hatcher. Pants decompositions of sur-
faces. http://www.math.cornell.edu/ hatcher/Pa-
pers/pantsdecomp.pdf, 2000.

[5] J. Hershberger and J. Snoeyink. Computing mini-
mum length paths of a given homotopy class. Com-
put. Geom. Theory Appl., 4:63-98, 1994.

Geometric Games on Triangulations
Extended Abstract

Oswin Aichholzer! David Bremner? Erik D. Demaine?
Ferran Hurtado! Evangelos Kranakis® Hannes Krasser®
Suneeta Ramaswami’ Saurabh Sethia® Jorge Urrutia®

1 Introduction

Let S be a set of n points in the plane, which we assume to be in general position, i.e., no three
points of S lie on the same line. A triangulation of S is a simplicial decomposition of its convex
hull having S as vertex set.

In this work we consider several perfect-information combinatorial games involving the vertices,
edges (straight-line segments) and faces (triangles) of some triangulation. We describe main
broad categories of these games and provide in various situations polynomial-time algorithms to
determine who wins a given game under optimal play, and ideally, to find a winning strategy.

We present games where two players R(ed) and B(lue) play in turns, as well as solitaire games
for one player. In some bichromatic versions, player R will use red and player B will use blue,
respectively, to color some element of the triangulation. In monochromatic variations, all players
(maybe the single one) use the same color, green.

Games on triangulations come in three main flavors:

e Constructing (a triangulation). The players construct a triangulation 7'(.S) on a given point
set S. Starting from no edges, players R and B play in turn by drawing one or more edges
in each round. In some variations, the game stops as soon as some structure is achieved. In
other cases, the game stops when the triangulation is complete, the last move or possibly
some counting decides then who is the winner.

e Transforming (a triangulation). A triangulation T'(S) on top of S is initially given, all edges
originally being black. In each turn, a player applies some local transformation to the current
triangulation, resulting in a new triangulation. The game stops when a specific configuration
is achieved or no more moves are possible.

e Marking (a triangulation). A triangulation T'(S) on top of S is initially given, all edges and
nodes originally being black. In each turn, some of its elements are marked (e.g. colored)
in a game-specific way. The game stops when some configuration of marked elements is
achieved (possibly the whole triangulation) or no more moves are possible.

For each of the variety of games described in Section 2, we are interested in characterizing who
wins the game, and designing efficient algorithms to determine the winner and compute a winning
strategy. More details about the games can be found in the full papers [1] and [2].

1 Institute for Softwaretechnology, Graz University of Technology; 2 Faculty of Computer Science, University
of New Brunswick; 3 Laboratory for Computer Science, Massachusetts Institute of Technology; 4 Departament de
Matematica Aplicada II, Universitat Politecnica de Catalunya; 5 School of Computer Science, Carleton University;
6 Institute for Theoretical Computer Science, Graz University of Technology; 7 Computer Science Department,
Rutgers University; 8 Department of Computer Science, Oregon State University; 9 Instituto de Matemadticas,
Universidad Nacional Auténoma de México.

89

2 Examples of Games

We describe next the rules of several specific games that we have studied. Our intention here is
to make clear which kind of games we are dealing with.

2.1 Constructing

2.1.1 Monochromatic Complete Triangulation. The players construct a triangulation 7°(S) on a
given point set S. Starting from no edges, players R and B play in turn by drawing one edge in
each round. Each time a player completes one or more empty triangle(s), it is (they are) given to
this player and it is again her turn (an “extra move”). Once the triangulation is complete, the
game stops and the player who owns more triangles is the winner.

2.1.2 Monochromatic Triangle. Starts as in 2.1.1, but has a different stopping condition: the first
player who completes one empty triangle is the winner.

2.1.8 Bichromatic Complete Triangulation. As in 2.1.1, but the two players use red and blue
edges. Only monochromatic triangles count.

2.1.4 Bichromatic Triangle. As in 2.1.2, but with red and blue edges. The first empty triangle
must be monochromatic.

2.2 Transforming

2.2.1 Monochromatic Flipping. Two players start with a triangulation whose edges are initially
black. Each move consists of choosing a black edge, flipping it, and coloring the new edge green.
The winner is determined by normal play, meaning that the goal is to make the last complete
move.

2.2.2 Monochromatic Flipping to Triangle. Same rules as for 2.2.1, except now the winner is who
completes the first empty green triangle.

2.2.8 Bichromatic Flipping. Two players play in turn, selecting a flippable black edge e of T'(S)
and flipping it. Then e as well as any still-black boundary edges of the enclosing quadrilateral
become red if it was player R’s turn, and blue if it was player B’s move. The game stops if no
more flips are possible. The player who owns more edges of her color wins.

2.2.4 All-Green Solitaire. In each move, the player flips a flippable black edge e of T'(S); then
e becomes green, as do the four boundary edges of the enclosing quadrilateral. The goal of the
game is to color all edges green.

2.2.5 Green-Wins Solitaire. As in 2.2.4, but the goal of the game is to obtain more green edges
than black edges.

2.3 Marking

2.3.1 Triangulation Coloring Game. Two players move in turn by coloring a black edge of T'(S)
green. The first player who completes an empty green triangle wins.

2.3.2 Bichromatic Coloring Game. Two players R and B move in turn by coloring red respectively
blue a black edge of T'(.S). The first player who completes an empty monochromatic triangle wins.
2.3.3 Four-Cycle Game. Same as 2.3.1 but the goal is to get an empty quadrilateral.

2.3.4 Nimstring Game. Nimstring is a game defined in Winning Ways [4] as a special case of
the classic children’s (but nonetheless deep) combinatorial game Dots and Boxes [3, 4]. In the
context of triangulations, players in Nimstring alternate marking one-by-one the edges of a given
triangulation (i.e., coloring green an edge, initially black), and whenever a triangle has all three
of its edges marked, the completing player is awarded an extra move and must move again. The
winner is determined by normal play. Thus, the player marking the last edge of the triangulation
actually loses, because that last edge completes one or two triangles, and the player is forced to
move again, which is impossible.

90

Besides beauty and entertainment, games keep attracting the interest of mathematicians and
computer scientists because they also have applications to modeling several areas and because
they often reveal deep mathematical properties of the underlying structures, in our case the com-
binatorics of planar triangulations.

Games on triangulations belong to the more general area of combinatorial games which typically
involve two players, R(ed) and B(lue). A game position consists of a set of options for Red’s moves
and a set of options for Blue’s moves, where each option is itself a game, representing the game
position resulting from the move. We define next a few more terms from combinatorial game
theory that we will use in this paper. For more information, refer to the books [4, 5] and the
survey [6]. The paper [7] contains a list of more than 900 references.

We consider games with perfect information (no hidden information as in many card games) and
there are no chance moves (like rolling dice). Most of the games we consider (the monochromatic
games) are also impartial in the sense that the options for Red are the same as the options for
Blue. In this case, a game is simply a set of games, and can thus be viewed as a tree. The leaves
of this tree correspond to the empty-set game, meaning that no options can be played; this game
is called the zero game, denoted 0.

In general, each leaf game might be assigned a label of whether the current player reaching
that node is a winner or loser, or the players tied. However, a common and natural assumption is
that the zero game is a losing position, because the next player to move has no move to make. We
usually make this assumption, called normal play, so that the goal is to make the last move. In
contrast, misére play is just the opposite: the last player able to move loses. In more complicated
games, the winner is determined by comparing scores.

Any impartial perfect-information combinatorial game without ties has one of two outcomes
under optimal play (when the players do their best to win): a first-player win or a second-player
win. In other words, whoever moves first can force herself to reach a winning leaf, or else whoever
moves second can force herself to reach a winning leaf, no matter how the other player moves
throughout the game. Such forcing procedures are called winning strategies. For example, under
normal play, the game 0 is a second-player win, and the game having a single move to 0 is a
first-player win, in both cases no matter how the players move. More generally, impartial games
may have a third outcome: that one player can force a tie.

The Sprague-Grundy theory of impartial games (see e.g. [4], Chapter 3) says that, under
normal play, every impartial perfect-information combinatorial game is equivalent to the classic
game of Nim. In (single-pile) Nim, there is a pile of 7 > 0 beans, denoted *i, and players alternate
removing any positive number of beans from the pile. Only the empty pile %0 results in a second-
player win (because the first player has no move); for any other pile, the first player can force a
win by removing all the beans. If a game is equivalent to *i¢, then i is called the Nim value of the
game.

3 Overview of Results

In this section we briefly summarize some of our results from the papers [1] and [2], where all
proofs and details can be found.

Theorem 1. Deciding whether the Triangulation Coloring Game on a simple-branching trian-
gulation (no two inner triangles share a common diagonal) on n points in convex position is a
first-player win or a second-player win, as well as finding moves leading to an optimal strategy,
can be solved in time linear in the size of the triangulation.

Theorem 2. The Monochromatic Triangle Game on n points in convex position is an incarnation
of a known game called Dawson’s Kayles [4]. It is thus a second-player win whenn = 5,9, 21, 25,29
(mod 34) and for the special cases n = 15 and n = 35; otherwise it is a first-player win. Each
move in a winning strategy can be computed in time linear in the size of the triangulation.

Theorem 3. The outcome of the Monochromatic Complete Triangulation Game on n points in
convex position is a first-player win for n odd, and a tie for n even.

91

Theorem 4. Whether a player can win the All-Green Solitaire Game for a given triangulation
of n points in convex position can be decided in time O(n). When the player can win, a winning
sequence of moves can be found within the same time bound.

Theorem 5. The player of the Green-Wins Solitaire Game can obtain from any given triangula-
tion on n points at least 1/6 of the edges to be green at the end of the game. There are triangulated
point sets such that no sequence of flips of black edges provides more than 5/9 of the edges to be
green at the end. (In the above fractions we don’t pay attention to additive constants).

Theorem 6. The player of the Green-Wins Solitaire Game can always win for any given trian-
gulation on n > 4 points in convex position.

Theorem 7. Nimstring in a fan with an even number of vertices is a first-player win.
Theorem 8. Nimstring in a wheel with an odd number of vertices is a second-player win.
Theorem 9. Four-Cycle in a triangulation whose dual is a path is a first-player win.
Theorem 10. Four-Cycle in a wheel with more than four triangles is a second-player win.

Theorem 11. Monochromatic Flipping on top of n points in convex position is a first-player win
if n is even and a second-player win if n is odd.

Theorem 12. There is a constant N such that Monochromatic Flipping to Triangle in a triangu-
lation (whose dual is a path) of n > N points in convex position is a first-player win for n even,
and a second-player win for n odd.

Acknowledgments

David Bremner is supported by the AvH Foundation and NSERC Canada. Ferran Hurtado is par-
tially supported by Projects MEC-DGES-SEUID PB98-0933, MCYT-FEDER BFM2002-0557, Gen. Cat
2001SGR00224 and Accion Integrada Espafia-Austria HU2002-0010. Research of Evangelos Kranakis is
supported in part by NSERC and MITACS grants. Research of Hannes Krasser is supported by the
FWF (Austrian Fonds zur Férderung der Wissenschaftlichen Forschung). Research of Oswin Aichholzer
and Hannes Krasser ist partially supported by Acciones Integradas 2003-2004, Proj.Nr.1/2003. Suneeta
Ramaswami is partially supported by a Rutgers University ISATC pilot project grant. Jorge Urrutia is
supported in part by CONACYT grant 37540-A and grant PAPIIT.

References

[1] O. Aichholzer, D. Bremner, E. D. Demaine, F. Hurtado, E. Kranakis, H. Krasser, S. Ramaswami,
S. Sethia, J. Urrutia: Playing with triangulations. Manuscript in preparation.

[2] O. Aichholzer, D. Bremner, E. D. Demaine, F. Hurtado, E. Kranakis, H. Krasser, S. Ramaswami,
S. Sethia, J. Urrutia: Games on Triangulations: Several Variations. Manuscript in preparation.

[3] E. R. Berlekamp: The Dots and Boxes Game: Sophisticated Child’s Play. Academic Press (1982)

[4] E. R. Berlekamp, J. H. Conway, R. K. Guy: Winning Ways for your Mathematical Plays. Academic
Press (1982). Second edition in print, A K Peters Ltd., (2001)

[5] J. H. Conway: On Numbers and Games. Academic Press (1976). Second edition, A K Peters Ltd.
(2002)

[6] E. D. Demaine: Playing games with algorithms: Algorithmic combinatorial game theory. In: Proc.
26th Symp. on Math Found. in Comp. Sci., Lect. Notes in Comp. Sci., Springer-Verlag (2001)

[7] A.S. Fraenkel: Combinatorial Games: Selected Bibliography with a Succinct Gourmet Introduction.
Electronic Journal of Combinatorics, http://www.wisdom.weizmann.ac.il/ " fraenkel

[8] J. Galtier, F. Hurtado, M. Noy, S. Pérennes, J. Urrutia: Simultaneous edge flipping in triangulations.
Submitted.

92

Cutting Triangular Cycles of Lines in Space*

Boris Aronov'

Abstract

We show that a collection of lines in 3-space
can be cut into a sub-quadratic number of
pieces, such that all depth cycles defined by
triples of lines are eliminated. This partially
resolves a long-standing open problem in com-
putational geometry, motivated by hidden-
surface removal in computer graphics.

1 Introduction

Historical background. The chief goal of
most computer graphics applications is to
correctly depict (‘render’) a synthetic 3-
dimensional scene onto the computer screen.
The geometry of the scene is often represented
by a collection of triangles. Correct render-
ing means, in particular, resolving situations
where some object partly occludes another;
we want to correctly draw the objects that lie
closer to the viewpoint, and avoid drawing the
occluded parts.

*Part of the work on this paper has been carried
out at the U.S.-Israeli Workshop on Geometric Al-
gorithms, held in Jackson Hole, WY, in the summer
of 2002. Work on the paper by Boris Aronov and
Micha Sharir has been supported by a joint grant from
the U.S.-Israeli Binational Science Foundation. Work
by Vladlen Koltun and Micha Sharir has also been
supported by a grant from the Israel Science Fund
(for a Center of Excellence in Geometric Computing).
Work by Boris Aronov was also supported by NSF
Grants CCR-99-72568 and I'TR CCR-00-81964. Work
by Vladlen Koltun was also supported by NSF Grant
CCR-01-21555 and by the Rothschild Post-doctoral
Fellowship. Work by Micha Sharir was also supported
by NSF Grants CCR-97-32101 and CCR-00-98246, and
by the Hermann Minkowski-MINERVA Center for Ge-
ometry at Tel Aviv University.

TDepartment of Computer and Information Sci-
ence, Polytechnic University, Brooklyn, NY 11201-
3840, USA; aronov@ziggy.poly.edu.

fComputer Science Division,
California, Berkeley, CA 94720-1776,
vladlen@cs.berkeley.edu.

§School of Computer Science, Tel Aviv University,
Tel-Aviv 69978, Israel, and Courant Institute of Math-
ematical Sciences, New York University, New York,
NY 10012, USA; michas@post.tau.ac.il.

University of
USA;

Vladlen Koltunt

93

Micha Sharir®

The importance of determining which parts
of the scene objects are occluded was recog-
nized in computer graphics from its very be-
ginning. Until the 1970s, ‘Hidden-Surface Re-
moval’ (HSR) was considered one of computer
graphics’ most important problems, and has
received a substantial amount of attention;
see [12] for a survey of the ten leading HSR
algorithms circa 1974.

A commonly used HSR technique is the z-
buffer [3], which produces a ‘discrete’ solution
to the problem. Given a computer screen with
a specific resolution, the z-buffer heuristically
determines for each pixel on the screen the
object that is closest to the viewpoint inside
the area represented by the pixel. Since the
z-buffer yields to efficient implementations in
hardware, it is usually the HSR method of
choice. It is not, however, applicable in all
situations. Since its output consists of a fi-
nite number of samples, instead of an analytic
description of the visible part of the scene, it
does not provide the data necessary for vector-
based output devices, and is highly inefficient
in terms of memory consumption when deal-
ing for example with high-quality large-scale
printing tasks, which require producing im-
ages at exceedingly high resolutions. An ana-
lytic solution requires little memory and stor-
age space, and can be used to produce images
of arbitrary resolution.

These considerations motivated a long study
of hidden-surface removal in computational ge-
ometry, culminating in the early 1990s with a
number of algorithms that provide both con-
ceptual simplicity and satisfactory running-
time bounds. See de Berg [2] and Dorward [6]
for overviews of these developments, and Over-
mars and Sharir [9] for a simple HSR algorithm
with good theoretical running-time bounds.

A common feature of most HSR algorithms
is that they rely on the existence of a con-
sistent depth order for the input objects. For
example, if object A occludes part of object B,
and object B partially occludes object C, it is
assumed that C' will not occlude any part of A;

Figure 1: A depth cycle defined by three tri-
angles.

the contrary situation is termed a depth cycle,
or, simply, a cycle; see Figure 1. More pre-
cisely, it is assumed that the transitive closure
of the relationship A < B, defined as A occlud-
ing part of B, is a partial order. This assump-
tion is not always satisfied in practice, where
depth cycles are easily encountered in real-
world scenes involving tree branches, indus-
trial pipes, etc. Nevertheless, the reliance on a
consistent depth order is crucial to HSR algo-
rithms, most of which begin by sorting the ob-
jects either front-to-back (e.g., the Overmars-
Sharir algorithm [9]) or back-to-front (e.g., the
classical Painter’s Algorithm [12]).

A large number of algorithms have been de-
veloped for testing whether the depth relation-
ship in a collection of triangles contains a cy-
cle with respect to a specific viewpoint; see
de Berg [2] and the references therein. How-
ever, while these algorithms help detect cycles,
they do not provide strategies for dealing with
them.

One such strategy is to eliminate all depth
cycles, with respect to a specific viewpoint, by
cutting the objects into pieces that do not form
cycles, and running an HSR algorithm on the
resulting collection of pieces. In 1980, Fuchs
et al. [7] introduced Binary Space Partition
(BSP) trees, which can be used to perform the
described cutting. However, a BSP tree may
force up to a quadratic number of cuts [10],
which is problematic in light of the fact that
virtually all of the research into hidden-surface
removal has concentrated on the development
of output-sensitive algorithms that run in sub-
quadratic time whenever possible [2, 6].

It has been open since 1980 whether one

94

can devise an algorithm that, given a specific
viewpoint and a collection of n triangles in
R3, removes all depth cycles defined by this
collection with respect to the viewpoint using
a subquadratic number of cuts. The work of
Solan [11] and of Har-Peled and Sharir [8] im-
plies that this is indeed possible, provided a
subquadratic number of cuts is known to be
sufficient. In particular, these works present
algorithms that, given a collection £ of n lines
in 3-space, perform close to O(ny/C) cuts that
eliminate all cycles defined by £ as seen from
z = —oo, where C is the minimal required
number of such cuts.! That is, if we can pro-
vide a subquadratic bound on the minimum
number of cuts that suffice to eliminate all cy-
cles defined by a collection of lines, then the
aforementioned algorithms are guaranteed to
find a collection of such cuts of (potentially
larger but still) subquadratic size.

Such an upper bound has however remained
elusive. The only progress in this direction
is due to Chazelle et al. [4], who in 1992
have analyzed the following special case of
the problem. A collection of line segments
in the plane is said to form a grid if it can
be partitioned into two subcollections of ‘red’
and ‘blue’ segments, such that all red (resp.,
blue) segments are pairwise disjoint, and all
red (resp., blue) segments intersect all blue
(resp., red) segments in the same order; see
Figure 2. Chazelle et al. [4] have shown that
if the zy-projections of a collection of n seg-
ments in 3-space form a grid, then all cycles
defined by this collection (again, as seen from
z = —0o0) can be eliminated with O(n®/?) cuts.

Our contribution. This paper describes the
first step towards obtaining subquadratic gen-
eral upper bounds on the number of cuts that
are sufficient to eliminate all cycles defined by
a collection of lines in space. Specifically, we

't can be easily shown that stating the problem
in terms of collections of lines, instead of the origi-
nal setting of triangles, does not diminish the problem
complexity but does simplify the exposition of the re-
sults. Moreover, we can assume without loss of gener-
ality that the viewpoint lies at 2 = —o0, relying on an
appropriate transformation of the 3-dimensional space.
All previous work on cutting cycles has thus been done
with regard to collections of lines or line segments that
are viewed from z = —oo [4, 8, 11]. Since any cycle
defined by a collection of line segments is also a cycle
in the collection of lines spanned by these segments,
we will concentrate on the case of lines.

Figure 2: A collection of line segments that
forms a grid.

show that all triangular cycles, which are cy-
cles formed by triples of lines, can be elimi-
nated with O(n>~1/%9+¢) cuts, for an arbitrar-
ily small € > 0. While this bound is still far
from the lower bound Q(n3/?) that Chazelle
et al. [4] have provided for this quantity, and
does not immediately apply to cycles defined
by an arbitrary number of lines, it is an essen-
tial first step towards the complete solution.
As the first nontrivial general upper bound for
this problem, since the problem’s conception
more than 20 years ago, we expect it to be
generalized and improved, and the techniques
we introduce to be extended and simplified. A
central component in our proof is a result of
independent interest concerning the unrealiz-
ability of a certain weaving pattern of lines;
see full version for details [1].

2 Cutting Triangular Cycles

Let us provide a formal definition for the prob-
lem of cutting cycles. Let £ be a set of n
non-vertical lines in 3-space in general posi-
tion. Define the depth order < on L to be
such that ¢ < ¢ if £ passes below ('; that is,
the unique vertical line A that connects ¢ and
¢' meets them at two respective points p, p’ so
that the z-coordinate of p is smaller than that
of p'. The relationship < can have cycles, and
our challenge is to obtain nontrivial bounds on
the number of cuts that need to be applied to
the lines of £, so that the depth order among
the resulting segments and rays (defined in ex-
actly the same manner as for lines) has no cy-
cles.

95

Let ¢* denote the xy-projection of a line £,
and let £* = {¢* | £ € L} denote the set of
the projections of the lines in £. A cycle ¢
in £ of the form ¢, < l, < --- < {; < 4
can be represented as a closed oriented (pos-
sibly self-intersecting or even self-overlapping)
polygonal path ¢* = pips...pyp1, where p; is
the intersection point of £7 and €7, 4 ;-

The simplest kind of a cycle in the depth or-
der is a triangular cycle defined by three lines
by, 0o, U3, satisfying £y < 0y < 05 < £1. We call
a triangular cycle ¢ a clockwise (resp., counter-
clockwise) cycle if the resulting orientation of
¢* (as we trace it in the order {f — €5 — 05 —
£37) is clockwise (resp., counterclockwise); see
Figure 3.

In this paper we confine our study to trian-
gular cycles; thus from now on, the unqualified
term ‘cycle’ will always refer to a triangular
cycle. We therefore wish to cut the lines in
L so that all such cycles are eliminated. Here
is a simple procedure that achieves this goal.
Fix a parameter k to be determined later. For
each ¢ € L, cut £ at (the points projecting on)
every k-th vertex of A(L*) lying on £*. The
total number of cuts is O(n?/k). It is easy to
see that after these cuts are performed, any
cycle ¢ that has not been eliminated has the
property that ¢* is crossed by at most 3k/2
lines of £*. Using the probabilistic analysis
technique of Clarkson and Shor [5], the over-
all number of these ‘light’ triangular cycles is
O(k*vo(n/k)), where vo(m) is the maximum
number of triangular cycles ¢ in a collection of
m lines in space, such that ¢* is a face in the
arrangement of the projected lines. (We refer
to cycles of the latter type as empty.) Hence,
we can certainly eliminate all triangular cycles

in £ using
0 (% Ky (%)
k O \k
cuts.

Let C be a family of triples (¢1,£2,/3) of
distinct lines of £, such that each triple in
C forms a counterclockwise triangular cycle
whose zy-projection is a face of A(L*). It suf-
fices to obtain a bound on |C|, since the over-
all number of triangular face cycles is at most
twice this bound. Such a bound is given in the
following theorem, whose proof constitutes the
main technical part of the full version of this

paper [1].

(1)

1 1 1 1
@uxgn gu/ ,au
I, / I \
AN /

Clockwisell Counterclockwisel

Figure 3: The two kinds of triangular cycles.

Theorem 2.1. Given a set L of n nonverti-
cal lines in R? in general position, the number
of empty triangular counterclockwise cycles de-
fined by L is O(n>~'/34t€) for any e > 0.

This theorem states that |C| is bounded by
O(n?>=1/34+¢) for any € > 0, which implies
that vo(n) = O(n?~'/34*¢). Plugging this es-
timate into (1) we conclude that the number of
cuts needed to eliminate all triangular cycles
in £ is

2 2—1/34+¢
o (™ _
o < P (%)) =
n?)
10 <? + k35/34—5n2—1/34+5))

Choosing k = n'/%9 and replacing & by an ap-

propriate multiple, we obtain the main result
of this paper.

Theorem 2.2. A set L of n nonvertical lines
in R® in general position can be cut into
O(n? 1/69t2) segments and rays, for any e >
0, such that no triangular cycles are present in
the depth order of these portions of the lines.

The interested reader is referred to the full
version [1] for the missing technical details.

Acknowledgments

The authors wish to express their gratitude
to Pankaj Agarwal, Sariel Har-Peled and
Shakhar Smorodinsky for insightful sugges-
tions concerning the material presented in this

paper.

96

References

[1] B. Aronov, V. Koltun and M. Sharir.
Cutting triangular cycles of lines in space.
http://www.cs.berkeley.edu/~vladlen/cycles-

conf.zip
M. de Berg, Ray Shooting, Depth Or-

ders and Hidden Surface Remowval, Lec-
ture Notes Comput. Sci., 703, Springer
Verlag, Berlin, 1993.

E. Catmull, A Subdivision Algorithm for
Computer Display of Curved Surfaces,
Ph.D. Thesis, UTEC-CSC-74-133, Dept.
Comput. Sci., University of Utah, 1974.
B. Chazelle, H. Edelsbrunner, L.J.
Guibas, R. Pollack, R. Seidel, M. Sharir
and J. Snoeyink, Counting and cutting
cycles of lines and rods in space, Comput.
Geom. Theory Appls. 1 (1992), 305-323.
K. Clarkson and P. Shor, Applications
of random sampling in computational ge-
ometry, II, Discrete Comput. Geom. 4
(1989), 387-421.

[6] S. E. Dorward, A survey of object-space
hidden surface removal, Internat. J. Com-
put. Geom. Appl. 4 (1994), 325-362.

H. Fuchs, Z. M. Kedem and B. Naylor,
On visible surface generation by a pri-
ori tree structures, Comput. Graph. 14
(1980), 124-133.

S. Har-Peled and M. Sharir, On-line point
location in planar arrangements and its
applications, Discrete Comput. Geom. 26
(2001), 19-40.

M. H. Overmars and M. Sharir, A sim-
ple output-sensitive algorithm for hidden
surface removal, ACM Transactions on
Graphics 11 (1992), 1-11.

M. S. Paterson and F. F. Yao, Effi-
cient binary space partitions for hidden-
surface removal and solid modeling, Dis-
crete Comput. Geom. 5 (1990), 485-503.
A. Solan, Cutting cycles of rods in space,
Proc. 14th Annu. ACM Sympos. Comput.
Geom., 1998, 135-142.

I. E. Sutherland, R. F. Sproull and R.
A. Schumacker, A characterization of ten
hidden-surface algorithms, ACM Com-
put. Surv. 6 (1974), 1-55.

[7]

Red-Blue Separability Problems in 3D *

Ferran Hurtado |

1 Introduction

Let B and R be two disjoint sets of points in 3D
classified as blue and red points, respectively.
Let n be the number of points in B and R. We
consider the sets of points in general position,
thus there are no four points in a plane and no
three points on a line. Let C be a family of sur-
faces in 3D. The sets B and R are C separable
if there exists a surface S € C such that every
connected component of R® — S contains points
only from B or from R. If S is a plane, we have
linear separability. The decision problem of lin-
ear separability for two disjoint sets of objects
(points, segments, polygons or circles) in 2D or
(points, segments, polyhedra or spheres) in 3D
can be solved in linear time [8, 13].

In [1, 10, 11] the authors study the separa-
bility of two disjoint point sets in the plane by
the following criteria: wedge separability, strip
separability and double wedge separability. Op-
timal ©(nlogn) time algorithms for deciding
wedge, strip, and double wedge separability, as
well as for constructing the locus of feasible
apices of wedges and double wedges, and the
interval of feasible slopes of strips are described
in [1, 10, 11]. They have also shown how to find
wedges and double wedges with maximum and
minimum aperture angle, and the narrowest and
the widest strips.

In this abstract we summarize results from
our work on separability of two disjoint point
sets in 3D that extends the criteria above and
gives solutions to various separability problems.
For each separability criterion we consider the
problem of deciding whether that particular sep-
arability is feasible, which is probably equiv-
alent to finding one solution to the problem;
in some cases, we also consider the problem of
finding partial descriptions of all feasible solu-

Carlos Searal

Saurabh Sethiat

tions. For some separability criteria we con-
sider, the convex hull of either the red or blue
points needs to be monochromatic. If it is so,
we perform this check as a first step in our algo-
rithms in O(nlogn) time by computing CH(R)
and CH(B) [14]. First, we consider the problem
of computing all the feasible solutions for linear
separability. Second, we study slice, wedge, and
diwedge separability as the natural extensions
in 3D for strip, wedge, and double wedge sep-
arability in 2D. Third, we study the decision
problem for prismatic, pyramidal, and dipyra-
midal separability, which also can be considered
as extensions in 3D for strip, wedge, and double
wedge separability criteria, but allowing a linear
number of planes. Finally, we study some sep-
arability criteria defined by a constant number
of planes.

We provide proof for one of our results (slice
separability) and state others without proof due
to space constraint.

2 Linear separability

The decision problem of linear separability for
two disjoint point sets in 3D can be solved in
linear time [13]. The problem of computing all
feasible solutions is solved by the next theorem.

Theorem 1. The locus of all the planes sepa-
rating B and R can be computed in ©(nlogn)
time. Once we have pre-computed the locus, to
decide whether a given plane separates the point
sets can be done in O(logn) time.

The problem of computing the maximum
Euclidean distance between two parallel sepa-
rating planes has been solved by Houle [8] with
the following theorem.

Theorem 2. [8] Given two point sets in R?,
then a separating hyperplane which minimizes

*Partially supported by grants DGES-MEC-SEUID PB98-0933, MCYT-FEDER BFM2002-0557, DURSI
2001SGR00224 and Joint Commission USA-Spain for Scientific and Technological Cooperation Project 98191.

TDpt. Matematica Aplicada 11, U.P.C., Barcelona, Spain, {hurtado, seara}@ma2.upc.es

#Department of Computer Science, Oregon State University, Corvallis, OR 97331, USA, saurabh@cs.orst.edu

97

the orthogonal Fuclidean distance between the
hyperplane and the point sets may be found, or
its non-existence determined, in O(n) time.

A consequence is the following corollary.

Corollary 1. The widest separating slice de-
fined by two parallel separating planes of B and
R can be computed in O(n) time.

3 Separability by two planes

In this section we study slice, wedge, and di-
wedge separabilities, which involve exactly two
separating planes.

3.1

A slice is defined as the space between two par-
allel planes. The normal vector to the planes of
the slice is called the slice direction. The slice
separability problem asks the question: Is there
a slice that contains all the red points but does
not contain any blue point or vice versa?

Slice separability

Theorem 3. Deciding whether the sets B and
R are slice separable can be done in O(n?) time.
The locus of slice directions of all feasible solu-
tions can be computed in O(n®logn) time and
the complezity of the locus is ©(n?).

Proof. (Sketch) Let u be the slice direction of
a separating slice which contains R. Let B
(B2) be the set of blue points above (below) the
slice. A plane 7; with normal vector u passing
through any red point r is a separating plane of
B, and B,. While keeping the point r on m,
we can move u around with two degrees of free-
dom until it bumps into two blue points by and
by. Thus, a separating slice (if it exists) can be
found by the following O(n?) time algorithm.

1. Choose a red point r € R.

2. For each pair of blue points by and b2, com-
pute the plane 7; passing through by, b2,
and r. Compute B; (Bs), the set of blue
points above (below) .

3. By linear programming compute a sepa-
rating slice (if it exists) defined by two
parallel planes such that one separates By
from R U B, and, the other one separates
RU B1 from Bz.

In order to compute the set of slice directions of
all the feasible solutions we proceed as follows.

3.1. Compute CH(B,), CH(B>), CH(RUB),
and CH(R U By).

3.2. Compute the region on the unit sphere
formed by the set of directions of the
separating planes between CH(B;) and
CH(R U Bs). Proceed analogously with
CH(R U B;) and CH(B>). We obtain
two regions each bounded by at most two
convex chains with O(n) complexity. The
projection of each region on the plane
z = 1 is either a convex polygon or two
unbounded convex polygons.

3.3. Compute the intersection of the two re-
gions in O(n) time. Its boundary corre-
sponds to parallel planes which are always

touching CH(R) and some blue point.

Thus, in additional O(n logn) time, we can com-
pute the convex region on the unit sphere de-
fined by the set of slice directions of all feasible
solutions for each good partition. In full paper,
we also show that the locus on the unit sphere
of the set of slice directions of all feasible so-
lutions is formed by at most O(n?) connected
components, each one with at most linear com-
plexity, and the total complexity of the locus is
0O(n?). O

The width of a separating slice is defined by
the distance between the two parallel planes. It
is natural to ask about the narrowest and the
widest separating slices.

Theorem 4. Once we have pre-computed the
set of slice directions of the separating slices for
B and R, the widest and the narrowest sep-
arating slices can be computed in O(n®) and
O(n%logn) time, respectively.

3.2 Wedge separability

Two intersecting planes divide the 3D space into
four quadrants. Any one quadrant is called a 3D
wedge. The wedge separability problem is the
following: Is there a wedge that contains R but
does not contain any blue point or vice versa?

Theorem 5. Deciding whether B and R are
wedge separable can be done in O(n®) time.

For wedge separable point sets we ask about
a separating wedge with maximum or minimum
aperture angle. The wedge with minimum aper-
ture angle is related to slice separability (a slice
can be considerer as a wedge with aperture angle
0°) and the wedge with maximum aperture an-
gle is related to linear separability (if the aper-
ture angle is close to 180° then, we have a good
approximation to linear separability).

98

Theorem 6. Computing a separating wedge for
B and R with maximum or minimum aperture
angle can be done in O(n®logn) time.

A natural problem is to decide whether there
exists a separating wedge with a fixed aperture
angle 0, 0° < 6 < 180°. Note that if we have
pre-computed the separating wedges with maxi-
mum and minimum aperture angle, the problem
is not solved because it may be that B and R
are not wedge separable for all possible values
of aperture angle between the minimum and the
maximum.

Theorem 7. Computing a separating wedge for
B and R with fized aperture angle can be done
in O(n?logn) time.

3.3 Diwedge separability

Two intersecting planes divide the 3D space into
four quadrants. The union of a pair of oppo-
site quadrants is called a diwedge. The diwedge
separability problem is the following: Is there a
diwedge that contains R but does not contain
any point from B or vice versa?

Theorem 8. Deciding whether the sets B and
R are diwedge separable can be done in O(n*)
time.

We define the aperture angle of a diwedge to
be the bigger of the two aperture angles defined
by the planes of the diwedge. We consider the
problem of computing the separating diwedge
with maximum or minimum aperture angle. As
per the definition, the aperture angle can take
values between 90° and 180°.

Theorem 9. Computing a separating diwedge
for B and R with mazximum or minimum aper-
ture angle can be done in O(n*logn) time.

We also consider the problem of deciding
whether there exists a separating diwedge with
a fixed aperture angle 6, 90° < 6 < 180°.

Theorem 10. Computing a separating diwedge

for B and R with fized aperture angle can be

done in O(n*logn) time.

4 Separability by a linear number of
planes

In this section we study other separability cri-
teria which can be consider also as extensions
for slice, wedge and double wedge separability
in the plane, but allowing a linear number of
planes. More precisely, we extend the concepts
above to prismatic, pyramidal and dipyramidal
separability, respectively.

Prismatic separability

4.1

A prism is defined as the space swept by a con-
vex polygon when it is moved along a line per-
pendicular to its plane; the direction of this line
is called the prism direction. The prismatic sep-
arability problem asks the question: Is there an
infinite prism which contains all red points but
none of blue points or vice versa?

Theorem 11. Deciding whether the sets B and
R are prismatic separable and computing the lo-
cus of the prism directions of all feasible solu-
tions can be done in O(n®) time. The locus is
formed by at most O(n?) connected components
and its total complezity is O(n’a(n)).

A still open problem is how can we find a
minimum (in number of faces) separating prism?
The minimum prism has at least three faces,
hence this must address the question of decid-
ing triangular prismatic separability which will
be consider in section 5. We can compute the
minimum separating prism for a given direction
of prism u. This problem is equivalent to com-
puting the minimum (in number of edges) con-
vex polygon which separates the projected red
and blue points on a plane with normal vector u;
this problem can be solved in O(n logn) optimal
time [1, 7].

4.2 Pyramidal separability

Join all the vertices of a convex polygon to a
point in space to get a pyramid. The convex
polygon is called the base of the pyramid while
the point in space is called its apex. An infinite
pyramid is one whose base is at infinity. The
pyramidal separability problem asks the ques-
tion: Is there an infinite pyramid that contains
all the red points but none of the blue points or
vice versa?

Theorem 12. Deciding pyramidal separability
for B and R and computing the locus of apices
of all the separating pyramids can be done with
a randomized algorithm whose expected running
time is O(n®log® n). The locus of apices of sep-
arating pyramids is formed by O(n3) connected
components with O(n>logn) total complezity.

Next theorem shows a deterministic algo-
rithm for solving the decision problem.

Theorem 13. Deciding whether the sets B and
R are pyramidal separable can be done in O(n")
time.

99

4.3 Dipyramaidal separability

Dipyramidal separability has the same defini-
tion as pyramidal separability except that now
we have two symmetrical pyramids having the
same apex. Assume that the red points R are
inside the possible separating dipyramid which
produces a partition of R.

Theorem 14. Deciding whether the sets B and
R are dipyramidal separable can be dome in
O(n®logn) time.

5 Separability by a constant number of
planes

In this section we study some particular separa-
bility criteria which involve three to six planes.
More precisely, we consider triplane, triangular
prism, tetrahedral and box separability.

Three intersecting planes divide the 3D
space into eight octants. The triplane separabil-
ity problem asks the question: Are there three
planes such that each of the octants they define
has points of only one color?

Theorem 15. Deciding whether the sets B and
R are triplane separable can be done in O(n")
time.

The triangular prismatic separability prob-
lem asks the question: Is there an infinite tri-
angular prism which contains all the red points
but none of the blue points or vice versa?

Theorem 16. Deciding whether the sets B and
R are triangular prismatic separable can be done
in O(n®) time.

The tetrahedral separability problem asks
the question: Is there a tetrahedron that con-
tains all the red points but none of the blue
points or vice versa?

Theorem 17. Deciding whether the sets B and
R are tetrahedral separable can be done in O(n")
time.

The box separability problem asks the ques-
tion: Is there an orthogonal box which contains
all the red points but none of the blue or vice
versa?

Theorem 18. Deciding whether the sets B and
R are box separable can be done in O(n") time.

References

[1]

[10]

100

E. M. Arkin, F. Hurtado, J. S. B. Mitchell,
C. Seara, S. S. Skiena, Some Lower Bounds
on Geometric Separability Problems, 11th Fall
Workshop on Computational Geometry, 2001.

B. Aronov, M. Sharir, The Common Euterior
of Conver Polygons in the Plane, Computa-
tional Geometry: Theory and Applications, 8,
1997, pp. 139-149.

B. Aronov, M. Sharir, B. Tagansky The Union
of Conver Polyhedral in Three Dimensions,
SIAM J. Comput., 26 (6), 1997, pp. 1670-1688.

B. Chazelle, H. Edelsbrunner, An Optimal Al-
gorithm for Intersecting Line Segments, Jour-
nal of ACM, 39, 1992, pp. 1-54.

B. Chazelle, H. Edelsbrunner, L. Guibas, M.
Sharir, Diameter, Width, Closest Line Pair,
and Parametric Searching, 8th Annual Symp.
on Comput. Geom., 1992, pp. 120-129

G. Davis, Computing Separating Planes for a
Pair of Disjoint Polytopes, First Annual Symp.
on Comput. Geom., 1985, pp. 8-14.

H. Edelsbrunner, F. P. Preparata, Minimum
Polygonal Separation, Information and Com-
putation, 77, 1988, pp. 218-232.

M. E. Houle, Algorithms for Weak and Wide
Separation of Sets, Discrete Applied Mathe-
matics, Vol. 45, 1993, pp. 139-159.

M. E. Houle and G. T. Toussaint, Computing
the Width of a Set, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol.
10, No. 5, 1988, pp. 761-765.

F. Hurtado, M. Noy, P. A. Ramos, C. Seara,
Separating Objects in the Plane with Wedges
and Strips, Discrete Applied Mathematics,
Vol. 109, 2001, pp. 109-138.

F. Hurtado, M. Mora, P. A. Ramos, C. Seara,
Two Problems on Separability with Lines and
Polygonal, 15th European Workshop on Com-
putational Geometry, 1999, pp. 33-35.

G. O. Katona, On a Problem of L. Fejes Téth,
Stud. Sci. Math. Hung., 12, 1977, pp. 77-80.

N. Megiddo, Linear-time Algorithms for Lin-
ear Programming in R® and Related Problems,
SIAM J. Comput., 12 (4), 1983, pp. 759-776.

F. P. Preparata, S. J. Hong, Conver Hulls of
Finite Sets of Points in Two and Three Dimen-
sions, Comm. of ACM, 20, 1977, pp. 87-93.

The Maximum Number of Edges in a
Three-Dimensional Grid-Drawing *

Prosenjit Bose* Jurek Czyzowicz? Pat Morin? David R. Wood?

Abstract

An exact formula is given for the maximum number of edges in a graph that admits a
three-dimensional grid-drawing contained in a given bounding box.

A three-dimensional (straight-line) grid-drawing of a graph represents the vertices by distinct
points in Z3, and represents each edge by a line-segment between its endpoints that does not
intersect any other vertex, and does not intersect any other edge except at the endpoints. A
folklore result states that every (simple) graph has a three-dimensional grid-drawing (see [2]). We
therefore are interested in grid-drawings with small ‘volume’.

The bounding box of a three-dimensional grid-drawing is the axis-aligned box of minimum size
that contains the drawing. By an X x Y x Z grid-drawing we mean a three-dimensional grid-
drawing, such that the edges of the bounding box contain X, Y, and Z grid-points, respectively.
The volume of a three-dimensional grid-drawing is the number of grid-points in the bounding box;
that is, the volume of an X xY x Z grid-drawing is XY Z. (This definition is formulated to ensure
that a two-dimensional grid-drawing has positive volume.) Our main contribution is the following
extremal result.

Theorem 1. The mazimum number of edges in an X XY X Z grid-drawing is exactly
22X -2y -1)(2Z2-1)-XYZ .

Proof. Consider an X x Y x Z grid-drawing of a graph G with n vertices and m edges. Let P be
the set of points (z,y, z) contained in the bounding box such that 2z, 2y, and 2z are all integers.
Observe that |P| = (2X — 1)(2Y — 1)(2Z — 1). The midpoint of every edge of G is in P, and no
two edges share a common midpoint. Hence m < |P|. In addition, the midpoint of an edge does
not intersect a vertex. Thus

m < |P|—n . (1)

A drawing with the maximum number of edges has no edge that passes through a grid-point.
Otherwise, sub-divide the edge, and place a new vertex at that grid-point. Thus n = XY Z, and
m < |P|— XY Z, as claimed.

This bound is attained by the following construction. Associate a vertex with each grid-point
in an X xY x Z grid-box B. As illustrated in Figure 1, every vertex (z,y, z) is adjacent to each
of (x £ 1,y,2), (z,y £1,2), (z,y,2 £ 1), (£ Ly 1,2), (@£ L,y,2+1), (z,y £ 1,2+ 1), and
(x£1,y£1,z+1), unless such a grid-point is not in B. It is easily seen that no two edges intersect,
except at a common endpoint. Furthermore, every point in P is either a vertex or the midpoint
of an edge. Thus the number of edges is |P| - XY Z. O

¥School of Computer Science, Carleton University, Ottawa, Ontario, Canada.
E-mail: {jit,morin,davidw}@scs.carleton.ca

§Département d’informatique et d’ingénierie, Université du Québec en Outaouais, Gatineau, Québec, Canada.
E-mail: jurek@uqgo.ca

*Research supported by NSERC.

101

Figure 1: The neighbourhood of a vertex.

Theorem 1 can be interpreted as a lower bound on the volume of a three-dimensional grid-
drawing of a given graph. Many upper bounds on the volume of three-dimensional grid-drawings
are known [1-9]. There are two known non-trivial lower bounds for specific families of graphs.
Cohen, Eades, Lin, and Ruskey [2] proved that the minimum volume of a three-dimensional grid-
drawing of the complete graph K, is ©(n?®). The lower bound follows from the fact that K3 is not
planar, and hence at most four vertices can lie in a single grid-plane. The second lower bound is
due to Pach, Thiele, and Téth 7], who proved that the minimum volume of a three-dimensional
grid-drawing of the complete bipartite graph K, , is ©(n?). The proof of the lower bound is based
on the observation that no two edges are parallel. The result follows since the number of distinct
vectors between adjacent vertices is at most a constant times the volume. The following corollary
of Theorem 1 generalises this lower bound for K, , to all graphs.

Corollary 1. A three-dimensional grid-drawing of a graph with n vertices and m edges has volume

+
greater than "g=.

Proof. Let v be the volume of an X x Y x Z grid-drawing. By (1), m < |P| —n < 8v —n, and
hence v > 28 O

Obviously the bound in Corollary 1 can be slightly improved by considering the exact dimen-
sions of the bounding box. Theorem 1 generalises to multi-dimensional polyline grid-drawings
(where edges may bend at grid-points) as follows.

Theorem 2. Let B C R? be a conver set. Let S = BN Z? be the set of grid-points in B. The
mazimum number of edges in a polyline grid-drawing with bounding box B is at most (2% —1)|S|.
If B is an X1 X --- x Xy grid-box, then the maximum number of edges is exactly

d d

H(zxi -1) — HX,- .

i=1 i=1

Proof. Let P = {x € B : 2x € Z. Consider a polyline grid-drawing with bounding box B.
The midpoint of every edge is in P, and no two edges share a common midpoint. A drawing
with the maximum number of edges has no edge that passes through a grid-point. Otherwise,
sub-divide the edge, and place a new vertex at that grid-point. Thus the number of edges is at
most |P| — |S]| < (2¢ - 1)|S5].

102

If Bisan Xj x --- x X4 grid-box, then |P| —|S| = H?:1(2Xi -1) - H?:l X;. To construct a
grid-drawing with this many edges, associate one vertex with each grid-point in S. Observe that
every point « € P\ S is in the interior of exactly one unit-sized d’-dimensional hypercube with
corners in S, where 1 < d’ < d. For every point ¢ € P\ S, add an edge passing through x between
opposite vertices of the unit-sized hypercube corresponding to x. Edges only intersect at common
endpoints, since these unit-sized hypercubes only intersect along their boundaries. Every point in
P contains a vertex or a midpoint of an edge. Thus the number of edges is precisely |P| —|S|. O

References

[1] T. CALAMONERI AND A. STERBINI, 3D straight-line grid drawing of 4-colorable graphs. In-
form. Process. Lett., 63(2):97-102, 1997.

[2] R. F. CoHEN, P. EADES, T. LiN, AND F. RUSKEY, Three-dimensional graph drawing. Algo-
rithmica, 17(2):199-208, 1996.

[3] E. b1 GiacoMo, G. LioTTA, AND S. WisMATH, Drawing series-parallel graphs on a box. In
S. WISMATH, ed., Proc. 14th Canadian Conf. on Computational Geometry (CCCG ’02), The
University of Lethbridge, Canada, 2002.

[4] V. Duimovi¢, P. MoRIN, AND D. R. Woob, Path-width and three-dimensional straight-
line grid drawings of graphs. In M. T. GOODRICH AND S. G. KOBOUROV, eds., Proc. 10th
International Symp. on Graph Drawing (GD ’02), vol. 2528 of Lecture Notes in Comput. Sci.,
pp. 42-53, Springer, 2002.

[5] V. DuiMovi¢ AND D. R. WooOD, Tree-partitions of k-trees with applications in graph layout.
Tech. Rep. TR-02-03, School of Computer Science, Carleton University, Ottawa, Canada, 2002.

[6] S. FELSNER, S. WISMATH, AND G. LI10TTA, Straight-line drawings on restricted integer grids
in two and three dimensions. In P. MuTZEL, M. JUNGER, AND S. LEIPERT, eds., Proc. 9th
International Symp. on Graph Drawing (GD ’01), vol. 2265 of Lecture Notes in Comput. Sci.,
pp. 328-342, Springer, 2002.

[7] J. Pacu, T. THIELE, AND G. TOTH, Three-dimensional grid drawings of graphs. In
G. D1 BATTISTA, ed., Proc. 5th International Symp. on Graph Drawing (GD ’97), vol. 1353
of Lecture Notes in Comput. Sci., pp. 47-51, Springer, 1998.

[8] T. PORANEN, A new algorithm for drawing series-parallel digraphs in 3D. Tech. Rep. A-2000-
16, Dept. of Computer and Information Sciences, University of Tampere, Finland, 2000.

[9] D. R. WooD, Queue layouts, tree-width, and three-dimensional graph drawing. In
M. AGRAWAL AND A. SETH, eds., Proc. 22nd Foundations of Software Technology and The-
oretical Computer Science (FST TCS ’02), vol. 2556 of Lecture Notes in Comput. Sci., pp.
348-359, Springer, 2002.

103

104

Constrained Higher Order Delaunay Triangulations*

Joachim Gudmundsson Herman Haverkort Marc van Kreveld

Dept. of Computer Science, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.
joachim@cs.uu.nl, herman@cs.uu.nl, marc@cs.uu.nl

1 Introduction

A previous paper by Gudmundsson et al. [3] studied a new type of triangulation called higher-
order Delaunay triangulation. It is a class of well-shaped triangulations for a given point set. Such
triangulations are useful in realistic terrain modeling on a set of points in the plane with known
elevation. Often, in terrain modeling it is desirable to force a given set of edges to be part of the
triangulation. These edges can come from contour lines or from the drainage network [2, 4, 6].
Motivated by this, we study constrained higher-order Delaunay triangulations in this paper. We
first repeat the definition of higher-order Delaunay triangulations:

Definition 1 A triangulation of a set P of points is an order-k Delaunay triangulation if for any
triangle of the triangulation, the circumcircle of that triangle contains at most k points of P.

So a normal Delaunay triangulation is an order-0 Delaunay triangulation, and for any positive
integer k, there can be many different order-k Delaunay triangulations. By definition, any order-k
Delaunay triangulation is also an order-k' Delaunay triangulation if &' > k.

Another important concept from Gudmundsson et al. [3] is the useful order of an edge:

Definition 2 For a set P of points, the order of an edge between two points p,q € P is the
minimum number of points inside any circle that passes through p and q. The useful order of an
edge is the lowest order of a triangulation that includes that edge.

In this paper we study constrained higher-order Delaunay triangulations, which must include
a given set of edges in the triangulation. Note that the order of a Delaunay triangulation with
only one constraining edge is exactly the useful order of that edge. This paper studies the case of
more than one constraining edges. We study the following questions:

1. Given a triangulation 7' (all edges are constraining), determine its order.

2. Given a set P of n points and a set E of edges, determine the lowest order Delaunay
triangulation of P that includes the edges of E.

The first question we can solve in two ways. Circular range counting gives an efficient algorithm
for large orders, and higher-order Voronoi diagrams are the basis of an efficient algorithm for lower
orders.

The main result we have for the second question is that if every edge in E has useful order
k or less, then a triangulation of E and P exists that has order at most 2k — 1. In fact, this
triangulation is the constrained Delaunay triangulation. The bound is worst-case optimal: there
are point sets with constraining edges, all of useful order £ or less, for which any triangulation has
order at least 2k — 1.

Throughout this paper we assume general position, that is, no three points of a point set P lie
on a line, and no four points of P lie on one circle.

*J.G. is supported by the Swedish Foundation for International Cooperation in Research and Higher Education.
H.H. is supported by the Netherlands Organization for Scientific Research (NWO).

105

2 Determining the order of a triangulation

Given a triangulation T, we can determine its order k in one of two ways, based on the observations
and algorithms given before in [3]. The first is efficient for any k, in particular, it is the best we
can do if the unknown value k is at least \/n with some logarithmic factors. The second algorithm
is more efficient when k is constant or a function that grows slower than \/n with logarithmic
factors. Small values of k are expected to be most important in practical situations.

Both algorithms begin by determining the O(n) circles through the three points of any triangle
in the triangulation. Then we find out how many points lie in these circles. The circle containing
the largest number of points determines the order of the triangulation.

The first algorithm is based on a circular range searching data structure on P that can
answer point counting queries for query circles efficiently. For various storage requirements
m, a data structure of space O(m) exists that answers such circular range counting queries in
O(n/m*/3log(m/n)) time [1]. The structure takes O(mlog® m) time to construct. We choose
m to be n/2, A triangulation gives rise to O(n) circular range queries; the maximum count
returned yields the order of the triangulation. So this solution takes O(n3/21og®®) n) time in
total.

The second solution comes down to choosing a value k' and testing whether the actual order k
is less than &' or not. This can be done by computing the &’-th order VD and preprocessing it for
point location queries. A query returns the k’-th closest point. To find out — for a query circle
— whether it contains less than k&’ points, we query with the center of the circle and find the k'-th
closest point, which is tested explicitly for containment in the circle. If for all O(n) query circles
the k'-th closest point lies outside, we know that the order is less than &’.

The k'-th order VD can be computed and preprocessed for planar point location in O(nk'logn)
time [5]. We start with k' = 1, and if k& appears to be larger, we double k' and test again.
After at most O(logk) attempts, we find an interval of values [2¢,2¢+1] that must contain k. By
binary search on this interval, we take another O(log k) steps to determine the exact order of the
triangulation 7. So in total, this method takes O(nklognlogk) time.

Theorem 1 Given a triangulation with n vertices, its order k can be determined in O(n>/? logo(l) n)
time and in O(nklognlogk) time.

3 Completing to a Higher Order Delaunay Triangulation

Assume that a set P of n points and a set E of edges are given. P must include the endpoints
from E. This section deals with computing a triangulation of P that includes the edges of E. We
would like the triangulation to have the lowest possible order.

As mentioned in the introduction, a previous paper [3] includes the case |E| = 1. In case there
is only one constraining edge uv, we can determine the lowest k for which wv is a useful order-k
Delaunay edge. Then we can complete it to a triangulation only using triangles whose circumcircle
contains no more than k points. One of the triangles incident to wo has order k, or both, and no
other triangle needs to have higher order. In the completion, wv will be part of triangles Auvs
and Awuwvt. Points s and ¢ are the first points hit by a circle squeezed in between u and v from the
one side and from the other side, see Figure 1(a).

The case with more constraining edges is more difficult than the case of one constraining edge.
In [3] it was shown that if all edges of E are Delaunay or useful first order Delaunay, then a
completion to a first order Delaunay triangulation exists and can be computed in O(nlogn) time.
It is simply the constrained Delaunay triangulation. But as soon as E contains edges that are
useful k-order with k£ > 1, we cannot necessarily complete it to an order-k Delaunay triangulation
anymore, as shown in the next theorem.

Theorem 2 Let P be a set of points and let E be a set of edges that are all useful order-k Delaunay
edges, with k > 2. Then we have:

106

(i) For any sets P and E, the constrained Delaunay triangulation has order 2k — 2.

(ii) For some sets P and E, any constrained triangulation has order at least 2k — 2.

(iii) For some sets P and E, the constrained Delaunay triangulation does not have order
smaller than 2k — 2, but some other constrained triangulation has order k.

Proof: We begin with (ii), which is shown by example. Figure 1(b) excluding point s shows
a point set with 9 points and 2 constraining edges. Any constrained triangulation must contain
Auvw, and hence the number of points in the grey circle determines the order. The four other

Figure 1: (a) Hlustration of the first-points-hit (s and ¢). (b) Illustration of the proof.

circles show the useful order of the two constraining edges, which is 4. This example immediately
generalizes to having k& — 1 points in each of the two circle parts left of uv and right of u@. Then
the edges v and ww have useful order k, and the circle through u,v,w contains 2k — 2 points
inside.

Part (iii) of the lemma also follows from Figure 1(b), now including point s. The constrained
Delaunay triangulation has order 2k — 2, but flipping the edge vw to uws reduces the order to k.

For part (i), consider the constrained Delaunay triangulation of P and E, and any triangle
u,v,w of it. The circle through w,v,w can only contain points that are ‘behind’ edges of the
CDT, see Figure 2. These edges must be constraining edges of E. (More correctly: for any point
p € P inside the circle C'(u,v,w) there must be a constraining edge intersecting C'(u, v, w) twice
and which has Auvw and point p on different sides.) Let E' C E be the constraining edges that
intersect C(u,v,w) twice, separate a point of P inside C'(u,v,w) from Auvw, and are closest to
Auvvw among these (that is, no other constraining edge lies in between: in Figure 2, the dashed
edge is not in E').

If there is only one edge e € E’, there can be at most k points behind it inside C(u,v,w)
because the first-point-hit for the edge e in the direction of Auvw will be point u, v, or w, or some
point hit even before. That will give a circle with those same points inside. Since this circle is
one of the two that determine the useful order of e, there can be at most k points inside. Hence,
C(u,v,w) can contain at most k points as well.

If E' contains at least two edges, consider any two of them, say e; and es. Let Cy and Cy be
the circles through the endpoints of e; and e, and the first-point-hit behind the edges e; and es,
respectively, see Figure 2. These two circles together cover the whole of C(u,v,w). Since these
circles are also the ones that determine the useful order of the constraining edges e; and ey, which
is at most k, the circles C; and Cy can contain at most k points each. These include the points
u,v,w, unless the endpoints of e; (or ez) happen to be u, v, or w. But both C; and Cy contain
at least one of u,v,w. Hence, at most k& — 1 other points of P can lie inside each. It follows
that at most 2k — 2 points of P can lie inside C'(u, v, w), which shows that the order of Auvw is
at most 2k—2. Since this triangle was any triangle of the CDT, the part (i) of the lemma follows. O

107

4

Figure 2: The order of a triangle in a constrained Delaunay triangulation.

Conclusions

We have extended results on higher-order Delaunay triangulations and generalized them to con-
strained higher-order Delaunay triangulations. The application of constrained higher order De-
launay triangulations lies in realistic terrain modeling, where a known river network gives the set
of constraining edges. The next research issue is to integrate other criteria for realistic terrain
modeling [6] by optimizing over the constrained higher-order Delaunay triangulations.

An open problem that arises in this paper is the computation of the lowest order completion of

a set of useful order-k Delaunay edges to a triangulation. The constrained Delaunay triangulation
only gives a 2-approximation of the lowest order.

References

[1]

P. K. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 31, pages 575-598. CRC Press LLC, Boca
Raton, FL, 1997.

L. De Floriani and E. Puppo. A survey of constrained Delaunay triangulation algorithms
for surface representaion. In G. G. Pieroni, editor, Issues on Machine Vision, pages 95—104.
Springer-Verlag, New York, NY, 1989.

J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay triangulations.
Comput. Geom. Theory Appl., 23:85-98, 2002.

M. McAllister and J. Snoeyink. Extracting consistent watersheds from digital river and eleva-
tion data. In Proc. ASPRS/ACSM Annu. Conf., 1999.

E.A. Ramos. On range reporting, ray shooting and k-level construction. In Proc. 15th Annu.
ACM Symp. on Computational Geometry, pages 390-399, 1999.

B. Schneider. Geomorphologically sound reconstruction of digital terrain surfaces from con-
tours. In T.K. Poiker and N. Chrisman, editors, Proc. 8th Int. Symp. on Spatial Data Handling,
pages 657-667, 1998.

108

An approach to exhaustive generation of objects without
testing on isomorphisms.
Application of the method to the cell growth problem

Lyuba Alboul Alexandre Netchaev*
Sheffield Hallam University, UK University of Twente, the Netherlands
e-mail: L.Alboul@shu.ac.uk e-mail: netchaev@math.utwente.nl

1 Introduction

Generating and enumerating a specific class of objects are fundamental problems in discrete math-
ematics and related fields. In this communication we discuss a new approach to the problem of
generation that allows to avoid testing on isomorphisms without producing duplicates. We il-
lustrate our approach by presenting several algorithms to generate exhaustively some classes of
non—isomorphic combinatorial objects, such as dissectible polyhedra and polygons, and triangular
animals.

The usual approach to generate a class of objects is incremental: one starts from an initial object
and adds one generating block (unit) at a time. Depending on the objects to be generated, the
generating unit might be a vertex, an edge, a triangle, and so on. In the generating process one
encounters, in general, two types of procedures. One procedure aims at obtaining objects with
m+1 generating blocks from an object with m generating blocks, and the other — at obtaining from
an object with m generating blocks another object with the same number of generating blocks
by exchanging two generating blocks at a time, or by replacing a fixed group of generating blocks
by another fixed group. The first procedure occurs in various combinatorial problems, when all
objects of some class must be enumerated up to a given number of generating blocks. The second
procedure might be a sub—procedure of the first procedure. One encounters the second procedure
in its ‘pure’ form, for example, in the triangulation problem, when one needs to transform a trian-
gulation of n points into another triangulation. In a plane such a transformation often is flipping
an edge, and in a space - replacing two adjacent tetrahedra by the other three, and vice versa.
In both procedures only one operation is performed at each step: adding a generating block, or
exchanging generating blocks.

One of the most difficult tasks, due to its high computational expenses, in the process of enu-
merating/generating combinatorial objects is to avoid duplicates, especially if one deals with the
problem of generating unlabelled objects. In this case the problem of eliminating isomorphic
objects, or controlling isomorphisms, becomes crucial. For this reason many algorithms are re-
stricted to generation of so-called rooted objects, when one ‘detail’ of the object is fixed (for
example, a ‘node’/vertex, or a ‘side’/edge) [2]. Choosing a root destroys most of the symmetries,
which makes enumeration/generation easier. However, the number of rooted objects is larger then
that of non-rooted ones, and some non-isomorphic rooted objects are still isomorphic in the usual
setting. Therefore, if we want to derive from ‘rooted’ objects non—isomorphic non-rooted ones,
an additional check on isomorphisms is needed. Indeed, if an object has no symmetries, we can

*The research of the author is partially supported by the NWO (STW) (Dutch Organisation for Scientific
Research), project No. TWI4816

109

presume that it does not matter what edge or vertex we take as a ‘root’, however if an object
has symmetries, then some roots will be equivalent and therefore isomorphic non-rooted objects
will be produced in the process of generating. On the other hand, we cannot completely rule out
the possibility of generating isomorphic objects at some step of the generating process even if the
initial object has no symmetries.

In our method we use a heuristic idea to fix several ‘roots’ at each step of the generating process
in order to avoid repetitions of the objects and the consequent testing on isomorphisms. This idea
leads to the logical conclusion: at each step of generation to add not only one generating block at
time, but, depending on the situation, a collection of these generating blocks.

We apply our method to generate explicitly and exhaustively several types of objects: non—
isomorphic simplicial dissectible polyhedra, their two-dimensional counterparts, and so—called ¢ri-
angular animals. The generating block is a vertex (together with a corresponding star). Therefore,
in the case of dissectible polyhedra we use tetrahedra as generating blocks, and in the case of ‘dis-
sectible’ polygons - triangles. We refer to generating blocks in both cases as generating vertices.
In our approach at each step of the generating process only a fixed number of generating vertices
are simultaneously added with the advantage that no testing on isomorphisms is required. Our
method is not incremental, but it allows for parallelisation. In such a setting the problem is similar
to the problem of simultaneously edge flipping in triangulations, recently arisen in computational
geometry [6]. In [1] our first algorithm was introduced. In this communication we shortly describe
a theoretical background of constructive enumeration of dissectible polyhedra without testing on
isomorphisms, and then present several new algorithms to generate ‘dissectible’ polygons and
triangular animals.

2 Main definitions and concepts
A dissectible polyhedron is inductively defined as follows [3]:

Definition 1 1. A triangle and a tetrahedron are both dissectible polyhedra.

2. A dissectible polyhedron with (n + 1) tetrahedra is obtainable from a dissectible polyhedron
P with n tetrahedra by adding a new tetrahedron having precisely an exterior triangle in
common with P.

The concept of dissectible polyhedron is a natural generalisation of the concept of dissections of a
polygon which dates back to Euler. Euler formulated this problem as enumeration of the ways of
triangulating a convex polygon by means of nonintersecting diagonals [5]. This problem is equiv-
alent to the problem of dissecting a disk into triangular regions, since the boundary of a polygon
is homeomorphic to the boundary of a disc. There are many works dedicated to the problem
of dissecting a polygon or a disc. In the later case not only triangulated regions are considered
[4]. The papers are mostly dedicated to the problem of enumerating dissections combinatorially.
The interested reader is referred to the bibliography in [3], where also a method for combinatorial
enumeration of dissectible polyhedra is given.

Our method deals with constructive enumeration of dissectible polyhedra, or, in other words, with
their explicit generation. By means of the method we generate exhaustively dissectible polyhe-
dra and polygons without duplications and testing on isomorphism. Both objects, a dissectible
polyhedron and a polygon, represent triangulations. For simplicity, we refer to them as dis-
sectible triangulations. We generate all possible groups of automorphisms for a given dissectible
triangulation (called a preceding triangulation) and based on this generation we reconstruct all
non-isomorphic triangulations that are ‘derived’ from the given one. We call those triangulations
successive triangulations. The processes of generating groups of automorphisms and reconstruct-
ing triangulations are superposed, so the number of operations in the algorithm is reduced. In

110

order to avoid producing duplicates we add simultaneously a number of new generating vertices.
The triangulations that are generated from different preceding ones, are then non—isomorphic by
construction.

Essentially, our procedure consists of the following steps:
1. Take an initial (preceding) triangulation; define its groups of automorphisms.

2. Insert new vertices in such a way, that each group of automorphisms of the initial triangu-
lation yields only one new (successive) triangulation (a ’derived’ representative of the given
automorphism group).

3. Repeat the above two steps for each new obtained triangulation.

Note. Only at the initial step a full group of automorphisms is generated. At each following step
a restricted check on automorphisms suffices.

3 Results

On the base of our method several algorithms have been developed, each with a different number
of generating vertices. In each subsequent algorithm we were able to reduce considerably this
number. We denote the number of generating vertices by GV;, where i corresponds to the number
of the related algorithm.

In the first algorithm, developed for dissectible polyhedra, GV} is not less than k; k is the number
of vertices of degree three in a triangulation with n vertices. Suppose, that GV; is equal to [, then
the number [satisfies the following condition:

k<l<2(n—2), (1)

where k is a number of vertices of degree 3 of the initial/preceding triangulation, and 2(n — 2) is
the number of all faces (triangles) of a triangulation with n vertices. Indeed, we cannot add more
than 2(n — 2) vertices to a triangulation with n vertices. We add new vertices in a special way: to
each star of a vertex of degree 3 one new vertex is always added. We define the vertices of degree
three to which stars we add a new vertex as active vertices, and corresponding stars - as active
stars. A new vertex is always added to each active star (to one of three possible faces) and the
remaining [— k points are added to some other faces of the same triangulation with n vertices.
The latter faces do not need to belong to the stars of vertices of degree three. The remaining [— k
vertices are added not simultaneously, but one by one. We call our method k-incremental, since
at the first step we always add k vertices simultaneously, but the further steps are incremental,
because at each next step we add only one vertex from the remaining | — k vertices that may
be added. Therefore GV can be presented as GV S + GV R, where GV S is fixed and determined
by the number of active vertices, and GV R varies. This algorithm allows a direct analogue for
dissectible polygons. In this case k is the number of vertices of degree 2, GV does not exceed
n, where n is the number of boundary edges (equal to the number of vertices in the preceding
triangulation). The following theorem is proved:

Theorem 2 All generated dissectible triangulations are non-isomorphic and their generation is
ezhaustive.

We have developed two more algorithms for dissectible polygons. The GV S has been significantly
reduced. In the best algorithm is equal to 2 or 3, depending on the situation. We modify then this
algorithm to generate triangular animals. This problem belongs to so-called cell-growth problem
[9]. An animal is constructed from a collection of equivalent cells. A cell can be an equilateral
triangle, a square or a hexahedron. The cells must be non—overlapping. Recently, the cell-growth
problem has attracted attention of specialists in various fields (see, for example, [7]). Literature

111

dedicated to generation of animals is scarce. One of the recent works is [8]. In this work a
constructive enumeration of triangular animals up to 13 cells (triangles) is given, however, the
algorithm requires testing on isomorphisms . We have developed algorithms to generate simply-
connected and multiply-connected triangular animals without internal vertices. Simply—connected
triangular animals have been easily generated up to 18 cells (20 vertices). The results of generation
are given in Tab. 1.

Number of cells 13 14 15 16 17 18
Number of animals | 7541 | 20525 | 55633 | 152181 | 416188 | 1143526

Table 1: Counts of simply—connected triangular animals.

4 Conclusion

We presented a new approach to the problem of constructive enumeration of some classes of
the objects, that excludes testing on isomorphisms. By simultaneously adding several generating
blocks and by treating this operation as a primitive operation, one can expect a considerable
reduction of computational cost. Another advantage is that our approach divides the computation
into mutually disjoint sub-computations. In another words, our computation process is a forest
structure. Sub-computation processes (trees) are completely independent, and therefore can be
generated on separate processors. The open problem is to generalise the method to more complex
objects. The method might also be useful in simulation of growth of other structures, such as
molecular structures, corals, fractals, where a similar growth pattern is repeated at each subsequent
growth step.

References

[1] Alboul, L., Netchaev, A.: Isomorphic—ree generation of some classes triangulations without
repetitions. In Proc. of EWCG 2002 (European Workshop in Computational Geometry), April
10-12, 2002, Warsaw, pp. 116-117

[2] Avis, D.: Generating rooted triangulations without repetitions. Algorithmica, 16 (1996), 618—
632.

[3] Beineke, L.W., Pippert, R.E.: Enumerating dissectible polyhedra by their automorphism
groups. Can. J. Math., 26(1):50-67, 1974.

[4] Brown, W.G.: Enumeration of quadrilangular dissections of the disc. Can. J. Math., 17 (1965),
302-317.

[5] Euler, L.: Novi commentarii academiae scientiarium imperialis petropolitanae 7 (1758-1759),
13-14.

[6] Galtier, J., Hurtado, F., Noy, M., Perennes, S., Urrutia, J.: Parallel edge flipping. See:
http://www-ma2.upc.es/ hurtado/flipcorner.html

[7] Ivanov, A.O, Tuzhilin, A.A.: Branched geodesics. Geometrical theory of local minimal net-
works. (in Russian) Russian Research in Mathematics and Science, Vol. 5. The Elwin Mellen
Press 1999. ISBN 0-7734-3178-0.

[8] Konstantinova, E.: Constructive enumeration of triangular of triangular animals. See:
http://com2mac.postech.ac.kr /papers/2000/00-22.ps

[9] Palmer, E.M.: Variations of the cell-growth problem. In: Graph theory and applications.
Proc. Conf. western Michigan University, May 10-13 (1972), pp. 215-224, Berlin 1972.

112

Kinetic Convex Hull Maintenance Using Nested Convex Hulls

Mohammad Reza Razzazi', Ali Sajedi2

'Software Research and Development Laboratory, Computer Engineering Department, AmirKabir University of Technology,
Tehran, Iran

razzazi @ce.aut.ac.ir

* Software Research and Development Laboratory, Computer Engineering Department, AmirKabir University of Technology,
Tehran, Iran

alisajedi @yahoo.com

ABSTRACT

In this paper we present an effective kinetic data structure
and algorithm for efficient maintenance of convex hull of
moving points in 2d space. Given n points continuously
moving in the plane we give an efficient algorithm for
maintaining their convex hull. Our algorithm partitions the
original points into several groups, each group’s points
forming a convex polygon and the polygons are nested.

1- INTRODUCTION

The problem of convex hull has been exhaustively studied in
computational geometry [1, 2, 3, 6], but almost in the context
of static objects with operations like insertion and deletion.
Our emphasis is on maintenance of convex hull under
continuous motions of the given objects. Our algorithm takes
advantage of concurrency and neighbourhood in motions to
achieve a minimal number of combinatorial events. From this
point of view our data structure is similar to the dynamic
computational geometry framework introduced by Atallah
[7], which studies the number of combinatorially distinct
configurations of convex hull resulting from continuous
motion of objects. Our data structure does not need to know
the full motion of the objects in the beginning.

Bash, Guibas, and Hershberger in [8] introduced a useful
technique for maintaining convex hull and closest pair of
moving points in the plane called kinetic. Kinetic solutions
are based on occurrence of events. Each event corresponds to
changes in combination of a constant number of points such
as reversing the sign of angle ABC, or crossing the point A
with line segment BC. They called these changes
‘certificates’. Events are collected and scheduled in a global
event queue. In kinetic solutions we try to minimize the
number of events to reduce process time and space.

A good kinetic algorithm is local, in other words, each point
is involved in only polylogarithmically many certificates, and
occurrence of one event does not affect so many points and
events. For more information about kinetic solutions and
parameters refer to [9].

In [4], [5] the convex hull algorithm is based on upper
envelopes of duals of points in 2d space and calculates a good
number of events. Their work is on line segments and
envelopes, but our algorithm acts directly on points and

113

convex hull of them, hence our algorithm uses a sensible and
direct approach.

Our algorithm only schedules events for adjacent points in
the data structure, and hence does not involves too many
events.

Each object is assumed to be a point. Thus at any time we
want to have the convex hull of n points continuously moving
in a restricted area such as a rectangle. We assume that each
point has a flight plan that defines the moving direction and
speed of that point. This direction can only change because of
a collision between the point and borders of the region. Also
we assume that points can cross each other without any
collision.

2- PRELIMINARIES

It is obvious that during the time between occurrences of two
consequent events, the points present in convex hull does not
change, in other word the convex hull is formed of the same
points (with changing places) resulting the moving convex
hull. We do not need to calculate the convex hull all the time.
We initialize the data structure at the beginning and then only
at the scheduled times apply the events, possibly changing
the status of the convex hull.

In the following, we first, present a simpler version of our
kinetic data structure and then to improve its locality some
modifications will be applied. However, the main algorithm
is the same and can use each version of the data structure.

3- KINETIC DATA STRUCTURE

Our kinetic data structure is a set of nested convex hulls
(NCHs) containing all points of the problem (maybe there
will be only one or two points in the most inner convex hull,
that represents respectively a point or a line segment. We
assume that it also represents a convex hull). The convex
hulls are kept in a simple data structure such as array of
linked lists (array of convex hulls) or linked list of linked lists
(linked list of convex hulls). What is important is the
sequence of points in each convex hull. We study each
convex hull in clockwise order and next and prior pointers
for each point of it.

It is obvious that having NCHs, the convex hull is always
available (The convex hull of all points is always the outer

convex hull). By occurrence of any event we will update the
NCHs, possibly changing the place of some points in two
adjacent convex hulls or just changing the child(s) of a point,
which would be defined later.

The manner of creating NCHs from initial points is as
follows:
Algorithm createNCHs(pointsArray) // Returns NCHs
Input: pointsArray[1..n]

/I Array of coordinates of input points

Output: nested convex hull of (fixed) points

S: NCHs;
flag: array [1..n] of Boolean;
for all points, i, in pointsArray do
flag[i] € false;
while (there is any unflagged point in pointsArrsy)({
obtain the convex hull of all unflagged points of
pointsArray, naming CH;
add CHto S;
set flags of all points of CH to true;

}

return S;

Figure 1- Nested Convex Hulls used in our kinetic data
structure

A” prior A
A’ next

A next™.next

Figure 2- order of points in each convex hull is clockwise and
each point has two pointers to next and prior points.

Note that only once we need to create the NCHs from initial
points; the other times we change the NCHs when an event
occurs. These changes are all local and we do not have a
global event.

114

3-1- List of events

For each event we should work on the points of NCHs that
cooperate in that event.

For each point there are (possibly) internal and external
convex hulls. A part of NCHs is shown in Figure 3 (convex
hulls A, B, C...). Lines connecting B; to C, and Bj; to C¢
indicates the FirstChild and LastChild of B; that will be
defined for fully localizing the algorithm.

These definitions for a point, X, as follows:

- firstChild: Consider a point, P, on immediate inner layer of
X (IL(X)) which is not visible from X. Moving clockwise
from p on IL(X), the first point visible from X is called
firstChild(X).

- lastChild: Same as firstChild, the last point visible from X
is called lastChild(X).

A6

AS

Ad

Al

Cl1 D1
Figure 3- a part of NCHs named alphabetically

For example for point B; the points as firstChild and

lastChild are shown in Figure 3 (C, and Cg).

Important events that may change the outer convex hull

include: moving a point, p, from convex hull i to convex hull

i+1 or i-1 (goOut(p) and goln(p)).

List of possible events for a point such as B; is as follows:

1- Reaching the border of the region and reflecting the

direction of motion. We call this event changeDir(B;)

2- Moving B; toward the inner convex hull (C). We call this
event goIn(Bj).

3- Moving B; toward the outer convex hull (A). We call this
event goOut(B3).

4- Exiting C, from visibility region of B; (C; intersects line
segment B3C,). We call this event notFirstChild(B;).

5- Entering C1 into visibility region of B;. We call this event
beFirstChild(B5).

6- Exiting C4 from visibility region of B; (C5 intersects line
segment B;Cg). We call this event notLastChild(B3).

7- Moving C; into visibility region of B;. We call this event
beLastChild(B5;).

The last four events ensures having correct firstChild and
lastChild for each point at event times.

At each scheduled event we do necessary modifications to
NCHs. These changes are all local. For example in case of
Figure 3, moving B3 toward convex hull C leaves B, and B,
in convex hull B as neighbours (deleting B; form convex hull
B), also inserts B as a point of convex hull C between C, and
Cs. This results entering C3, C, and Cs recursively in inner
convex hulls. This (entrance to inner convex hulls

recursively) continues until the node that should enter inside
has only its two Children as visible points of inner convex
hull; in this case deleting it from outer convex hull and
inserting it in the inner convex hull is enough. This operation
is called goln. In Figures 4, 5 examples of simple goOut and
simple goln are shown. Simple events only change the two
adjacent convex hulls, and do not change the other internal
convex hulls, whilst complex events change several nested
convex hulls recursively.

All these operations are applied at each event and NCHs are
updated accordingly.

q

Figure 4- Simple goOut(p) event and changes made in the
NCHs

Figure 5- Simple goln(p) event and changes made in the

NCHs

In Table 1 we show the changes needed to do with
occurrence of each event:

Crossing the point
B3 firstChild
A o A £ o A o
. . .prior (e.g. C)) B/ firstChild”.prior
belel(r];t (ihl with extension of | (e.g. C;) will become the
3 line segment new B;A firstChild
B3B3AflrStChlld
(e.g. B5Cy)
Crossing the point
A :
AB3. lastChild B;”.lastChild”.prior (e.g.
notLastCh .prior (e.g. Cs) .
. U Cs) will become the new
ild(B3) with line segment B/ lastChild
BB;” lastChild 3
(e.g. B3C6)
Crossing point
B3”.lastChild
. Anext (e.g. C;) B~ lastChild”.next (e.g.
be]a?];tghﬂ with extension of C;)will become the new
3 line segment B;".lastChild
B;B; . lastChild
(e.g. B3C6)

Event Certificate Changes after occurrence
name
changeDir Crossing B3 with A reflected direction of
the border of the B; with respect to the
(Bs) region border will be applied
B; will be inserted in the
inner convex hull that
Crossing B3 with may result in goIn(Xj)
goln(By) | 1ine segrﬁent B,B, for some X and i
(Xelayers C, D, ...)
recursively
B;A firstChild (e.g. C,)
will be deleted from
Crossing B3 inner convex hull and
goOut AfirstChild (e.g. will be inserted between
(B C,) with the line B3 and B;".prior (e.g.
firstChild) segment B,) that may result in
B;3B;”.prior goOut(X;) for some i and
X (Xelayers C, D, ...)
recursively
Crossing the point
. ByMArtChild | g 1 g ChildAonexct (e.g.
notFirstCh Anext (e.g. C3) C .
. S 3) will become the new
ild(B;) with line segment B firstChild
B;B;A firstChild 3
(e-g- B3Cy)

115

Table 1- List of possible events
In the next section we present the algorithm working with the
data structure to maintain the convex hull.

4- KINETIC CONVEX
MAINTENANCE ALGORITHM

HULL

The high-level pseudo code for this algorithm is given below.
The code simulates NCHs maintenance and animates moving
NCHs. Note that all links are implemented by pointers; each
point has a pointer to next and previous points, and pointers
to its firstChild and lastChild. With occurrence of each event
these pointers are modified according to type of event.

Algorithm Kinetic_Convex_Hull:
Input: pointsArray[1..n]
/I Array of coordinates of input points
simTime
// The simulation time
Output: moving convex hull of points
Var
S: NCHs;
E: linked list of Events sorted by event time;

t, occurrenceTime: Time

S €& createNCHs(pointsArray);
S < linkChilds(S);
// : for all points finds firstChild and lastChild points
// (if any)
E & scheduleAllEvents(S);
// For almost all points there will be 7 events
// according to definition in section 3-1.
/I Exceptions are the points on innermost convex hull
t € getTime();

simTime < simTime + t;
occurrenceTime € E”.occurrenceTime;
/I EM.occurrenceTime is the time of first event
while(occurrenceTime < simTime){
draw S till time occurrenceTime;
/'S has the same configuration during this time
applyFirstEvent(E, S);
/I Applies the first event of list E. Applying this
/I event may change both E and S. Because of
// this, these two these parameters are called by
// reference and change their values in the
/I function. The places of points of NCHs are updated
/l and their related events in E are rescheduled.
E < E~nextEvent; // pointing E to next Event.

occurrenceTime € E ~.occurrenceTime;

5- CONCLUSIONS

Using the framework defined in [8] we proposed an
efficient algorithm using a direct approach. Because of
the nature of convex hull, it is difficult to localize the
problem. By using nested convex hulls we showed that
each point’s motion may only change the status of
some neighboring points, and as a result were able to
eliminate many events and achieve efficiency.

6- REFERENCES

1.J. Hershberger and S. Suri. Applications of a semi-
dynamic convex hull algorithm. BIT, 32:249-267, 1992.

2. M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Syst. Sci.,23:166-
204, 1981.

3. F. P. Perparata and M. I. Shamos. Computational
Geom-etry: An Introduction. Springer-Verlag, New
York, NY, 1985.

4. P. K. Agarwal, O. Schwarzkopf, and M.Sharir. The

overlay of lower envelopes and its applications. Discrete
Comput. Geom., 15:1-13, 1996

5.J. Hershberger. Finding the upper envelope of n line
seg-ments in O(nlogn) time. Inform Process. Left.,
33:169-174, 1989.

6. M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf. Computational Geometry, Algorithms and
applications. Springer-Verlag, Berlin, 2000.

(1]

(2]

(3]

(4]

(5]

(6]

7. M. J. Atallah. Some dynamic computational geometry
problems. Comput. Math. Appl., 11:1171-1181, 1985.

(71

(8]

(9]

116

8.J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. SoDA, 1997.

9.J. Basch L. J. Guibas, C. D. Silverstein and L. Zhang.
A Practical Evaluation of Kinetic Data Structures. 13th
Symposium on Computational Geometry, 1997.

Optimal tolerancing in mechanical design using polyhedral
computation tools

Komei Fukuda* Jean-Philippe Petit
School of Computer Science Laboratoire de Mécanique Appliquée
McGill University Ecole Supérieure d’Ingénieurs d’Annecy
Montreal, Canada Annecy, France

January 1, 2003

1 Introduction

Mechanical engineering is a field in which mechanisms (assemblies of parts) are designed and
manufactured. This mechanism is born from a customer need and this last specifies technical
functions which the final product will have to fulfil. A specification textbook is written. The
concern of the designer is then to translate these functions through technological choices. A
universal language is essential to define the product characteristics and must be common to each
sector of its development (design, manufacture and control). This language is called dimensioning
and tolerancing. Each part is represented by its nominal geometry (which is represented in CAD
software) based on perfect dimensions. Moreover, these parts are manufactured, so they have
defects. It is thus necessary to define acceptable limits in term of form, dimensions and position
of functional features. Tolerancing is an important operation because of this one will depend
the correct operation of the mechanism but also its cost (the manufacturing cost increases with
the precision of tolerances values); one can then be astonished by the absence of tolerancing
assistance modules in CAD software. A research team of LMécA (Laboratoire de Mécanique
Appliquée) works on a model intended to be integrated in CAD system. This model is called
model of the clearance domains and deviation domains [1]. These domains are polytopes built in
the six dimensional Euclidean space RS. For tolerancing analysis, various geometrical operations
(Minkowski sums, intersections...) on these polytopes are used (according to the mechanism
configuration : single loop, parallel loops or open loop).

In order to perform geometrical operations on polytopes in higher dimensions, we have tested
the polyhedral computation library CDDLIB [2]. CDDLIB provides two fundamental operations
on convex polytopes, the vertex enumeration and the facet enumeration. More precisely, the vertex
enumeration is to obtain the minimal V-representation of an H-polyhedron, and the facet enu-
meration is the converse. The library can be used with both floating-point arithmetic and infinite
precision rational (GMP) arithmetic. Even for simple examples, the floating point computation
was seen unstable. We could successfully use the GMP version of CDDLIB for several models of
the clearance domains and deviation domains.

2 Clearance Domain

The first function to fulfill for a mechanism is the assemblebility of its constituting parts. These
parts are connected the ones to the others by means of joints. It is necessary to consider these
joints in the model by defining clearance domain associated to each joint. A joint is constituted

*The research is partially supported by an NSERC grant, Canada.

117

of two distinct parts and a reference frame is attached to each part. Clearance domain of the
joint is a 6D polytopes (3 translations and 3 rotations) whose vertices correspond to maximum
displacements of a reference frame compared to the other.

Example (Clearance domain of a cylindrical joint).

For this joint, translation and rotation along the axis x are infinite (Tt = Rx = o0). There
are also small displacements due to clearance (J = D — d) of the part (1) compared to (0): Ty,
Tz, Ry and Rz

Part 0
Part 1

Clearance

Figure 1: Cylindrical joint

By considering small displacements torsors [3] of the joint, it is possible to write a linear set
of inequalities which leads on contact conditions. Those inequalities define the clearance domain
of the joint A between the parts (1) and (0). The domain noted {Joa1} is unbounded in Tz and
Rz directions, a 3D representation is shown in Figure 2.

This representation is a 3D cut of a 6D polytope with Tz = Rz =Ty = 0.

Figure 2: 3D representation of {Jya1}

Point 1 means: when there is no rotation of part (1) compared to (0) in the joint (nominal
position, see fig.1), maximal translation of (1) along Z axis is equal to J/2. For the point 2, if
there is a small rotation around Z between the two parts, the translation will be less than J/2.
All the joint configurations are considered through the 6D domain.

3 Deviation Domain

Tolerancing and so specifications translate designer requirements to define acceptable defect limits
of functional features (surface, axis...) with standard language (see Figure 3).

The specification proposed in Figure 3 means that toleranced surface must be positioned (sym-
bol) at a distant @ with a tolerance value of ¢ compared to the reference A. The control of such
a requirement, consists in checking if the manufactured surface is gap between two virtual plans
(dotted zone in Figure 3) which are parallel to the reference A and distant of a ¢ value one from

118

Figure 3: Specification example

the other. In the 6D configuration space (3 translations and 3 rotations), displacements of char-
acteristic points Pi of the toleranced surface are expressed through a set of linear inequalities:
—t/2 < (ﬁ? < t/2. The 6-polytope built with this set of inequalities is the deviation domain
{E} (see Figure 4) associated to the position specification. It represents the maximum defects
(displacements and angular position) of the toleranced surface.

Tz

Ry

Rx

Figure 4: Deviation domain {E} of the position specification

4 Application to a Single Loop Mechanism

The mechanism is composed of three parts (see Figure 5):

C
c0
\0 L L 1 Jé 20 lotnt € Surface c1
— _@_ I _._.g_,x Joint A
(A]
NN\"/// S
Figure 5: Assembly drawing Figure 6: Mechanism diagram

The three joints (A, B and C') can be translated by three clearance domains built in the same
point O. Surfaces of each part constituting joint are functional so supposed to be toleranced (en-
gineering drawing is not showed here) and the deviation domains are built in point O. Mechanism
theory [4] and configuration of mechanism diagram allow to write the following equation:

119

Eoc + Joci — Eic + Eip+ JiB2 — Eap + Eop + Joag — Eoa =0 (4.1)

Chosen tolerancing must verify assemblebility and interchangeability of any part belonging to
a batch. Fixing {J} = {Joc1} +{Jip2} + {240} and {E} = {Eoc} — {Eic} +{EiB} — {E2p} +
{E24}—{Epa}, considering equation (4.1), the two conditions above are satisfied if {E} C {J}. In
other words, more the functional features defects are important, more clearance into mechanism
joint will be necessary to correct those defects. From this condition, the procedure of tolerancing
analysis is

e Building each clearance domains (6-polytopes) associated to each joint,

Making Minkowski sum of these domains — {J},

Building deviation domains associated to each specification,

Making Minkowski sum of these domains — {E'},

Checking the inclusion of {E} into {J}.

Tolerancing is optimal when {J} = {E}.

5 Conclusion

In this model, polytopes help the designer to validate his tolerancing choices (tolerancing analysis):
checking mechanism assemblebility, respect of functional requirements. 3D cuts of graphic repre-
sentations of domains can also inform the designer on his qualitative and quantitative tolerancing
choices (tolerancing synthesis).

While existing codes for polyhedral computation turned out to be useful for analyzing some
models of the clearance domains and deviation domains, we need further developments of poly-
hedral computation codes. In particular, there is no efficient codes to compute the Minkowski
addition [5] of convex polytopes. In fact, this motivates one of the authors to design a new ef-
ficient algorithm for this problem which is highly parallelizable and easy to implement, see [6].
Implementing this algorithm and applying to our models, in particular for tolerancing analysis, is
one of our future research projects.

References

[1] Giordano Duret. Clearance space and deviation space - application to 3D chain of dimensions
and positions. 3rd CIRP, Cachan, 1993.

[2] Komei Fukuda. cdd, cddplus and cddlib homepage. McGill University, Montreal, Canada, 2002.
http://www.cs.mcgill.ca/~fukuda/software/cdd home/cdd.html.

[3] Bourdet Mathieu Lartigue Ballu. The concept of small displacement torsor in metrology.
Advanced mathematical tool in metrology, Series on advances in mathematics for applied
sciences, World scientific, Vol 40, 1996.

[4] Le Borzec and Lotterie. Théorie des mécanismes. Dunod, 1974.

[5] Peter Gritzmann and Bernt Sturmfels. Minkowski addition of polytopes: computational com-
plexity and applications to Grobner bases. SIAM J. Dics. Math., 6:246-269, 1993.

[6] Komei Fukuda. From the zonotope construction to the Minkowski addition of convex polytopes.
Preprint, School of Computer Science, McGill University, Montreal, 2002.

120

Approximating the Visible Region of a Point on a Terrain *
Boaz Ben-Moshe Paz Carmi Matthew J. Katz

Department of Computer Science
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

{benmoshe,carmip,matya}@cs.bgu.ac.il

Abstract

Given a terrain T and a point p on it, we wish to compute the region that is visible from
p. We present a generic radar-like algorithm for computing an approximation of this region.
The algorithm eztrapolates the visible region between two consecutive rays (from p) whenever
the rays are close enough; that is, whenever the difference between the sets of visible segments
along the rays is below some threshold. Thus the density of the sampling by rays is sensitive
to the shape of the visible region. We suggest a specific way to measure the resemblance
(difference) and to extrapolate the visible region between two consecutive rays. We report on
preliminary experimental results.

1 Introduction

Let T be a triangulation representing a terrain (i.e., there is a height (z-coordinate) associated
with each triangle vertex). We are interested in the following well known problem. Given a
point p on (or above) T, compute the region R, of T that is visible from p. A point g on
T is visible from p if and only if the line segment pq lies above 7' (in the weak sense). Thus
R, consists of all points on T that are visible from p. The problem of computing the visible
region of a point arises as a subproblem in numerous applications (see, e.g., [7, 9, 11]), and,
as such, has been studied extensively [2, 3, 4, 5, 7]. For example, the coverage area of an
antenna for which line of sight is required may be determined by clipping the region that is
visible from the tip of the antenna with an appropriate disk centered at the antenna.

Since the combinatorial complexity of R, might be Q(n?) [3, 6], where n is the number of
triangles in T, it is desirable to also have fast approximation algorithms, i.e., algorithms that
compute an approximation of R,. Moreover, a good approximation of the visible region is
often sufficient, especially when the triangulation itself is only a rough approximation of the
underlying terrain. Note that in this paper we are assuming that the terrain representation
(i.e., the triangulation T') is fixed and cannot be modified. Simplifying the triangulation can
of course lead to faster running times of any algorithm for computing the visible region. This
approach was studied in a previous paper [1]. See, e.g., [8] for more information on terrain
simplification.

We present a generic radar-like algorithm for computing an approximation of R,. The
algorithm computes the visible segments along two rays p1, p2 emanating from p, where the
angle between the rays is not too big. It then has to decide whether the two sets of visible
segments (one per ray) are close enough so that it can extrapolate the visible region of p within
the wedge defined by p1 and p2, or whether an intermediate ray is needed. In the latter case
the algorithm will now consider the smaller wedge defined by p: and the intermediate ray.
Thus a nice property of the algorithm is that the density of the sample rays varies and depends
on the shape of R,.

*Research by Ben-Moshe and Katz is partially supported by grant no. 2000160 from the U.S.-Israel Binational
Science Foundation, and by the MAGNET program of the Israel Ministry of Industry and Trade (LSRT consortium).
Research by Carmi is partially supported by a Kreitman Foundation doctoral fellowship.

121

In order to use this generic algorithm one must provide (i) a measure of resemblance
for two sets of visible segments, where each set consists of the visible segments along some
ray from p, and (ii) an algorithm to extrapolate the visible region between two rays whose
corresponding sets were found similar enough. In Section 2 we describe in more detail the
generic algorithm and provide the missing ingredients.

In Section 3 we suggest a natural way to measure the error associated with an approxima-
tion of R,. Using this error measure, we compare between our algorithm and the correspond-
ing fixed-angle version with the same number of sample rays. According to these experiments
our algorithm is much better in situations of “under sampling,” where the number of sample
rays is small. We are currently comparing our algorithm (and several variants of it) with other
(known) algorithms for approximating the visible region. A report on these experiments will
be included in the full version of this paper.

2 The Algorithm

In this section we first present our radar-like generic algorithm. Next we describe the measure
of resemblance and the extrapolation algorithm that we devised, and that are needed in order
to transform the generic algorithm into an actual algorithm.

The generic algorithm is presented in the frame below. The basic operation that is used
is the cross-section operation, denoted cross-section(T, p,6), which computes the visible seg-
ments along the ray emanating from p and forming an angle 6§ with the positive z-axis.
Roughly speaking, the generic algorithm sweeps the terrain T’ counter clockwise with a ray
p emanating from p, performing the cross-section operation whenever the pattern of visible
segments on p is about to change significantly with respect to the pattern that was found by
the previous call to cross-section. The algorithm then extrapolates, for each pair of consecu-
tive patterns, the visible region of p within the wedge defined by the corresponding locations
of p.

Given a triangulation T representing a terrain (i.e., with heights associated with
the triangle vertices) and a view point p on or above T":
0+0.
a < some constant angle, say, w/45 .
S1 « cross-section(T, p,) .
Sa < cross-section(T, p, 0 + «) .
while (8 < 360)
if (S1 is close enough to S3)
extrapolate(S1, S»);
0 < Sa.angle;
S1 SQ;
Sa « cross-section(T, p, min(+ «, 360));
else
u < (Si.angle + Sz.angle)/2;
Sa « cross-section (T, p, p);

In order to obtain an actual algorithm we must provide precise definitions of close enough
and extrapolate.
Close enough: A threshold function that checks whether two patterns Si,S» are similar,
where each of the patterns corresponds to the set of visible segments on some ray from p.
There are of course many ways to define close enough. We chose the following definition.
In practice, the rotating ray is actually a rotating segment of an appropriate length. Let [
denote this length. We refer to | as the range of sight. Now rotate the ray containing So
clockwise until it coincides with the ray containing Si. See Figure 1 (a). Next compute the
length of the XOR of S; and S>, that is, the total length covered by only one of the sets
S1,S2. This length is then divided by I. Denote by v the value that was computed, and let ¢
be the angle between S; and S>. If § - v < C, where C' is some constant, then return TRUE
else return FALSE. The role of § in the above formula is to force close enough to return
TRUE when the angle between the rays is small, even if the patterns that are being compared

122

differ significantly.

Ezxtrapolate: Given two patterns Si,S> which are close enough, we need to compute an
approximation of the portion of the visible region of p that is contained in the corresponding
wedge. We do this as follows. Consider Figure 1 (b). For each ‘event point’ (i.e., start or end
point of a visible segment) on one of the two horizontal rays, draw a vertical segment that
connects it with the corresponding point on the other ray. For each rectangle that is obtained
color it as follows, where grey means visible and black means invisible. If the horizontal
edges of a rectangle are either both visible from p or both invisible from p, then, if both are
visible, color it grey, else color it black. If, however, one of the horizontal edges is visible
and the other is invisible, divide the rectangle into four pieces by drawing the two diagonals.
The color of the upper and lower pieces is determined by the color of the upper and lower
edges, respectively, and the color of the left and right pieces is determined by the color of the
rectangles on the left and on the right, respectively.

2 - ———_

—
/ 41—!—!—1—H T
—i - R <
i £ - |
. —_——— _— 2 —> = R
- —_— _— L1

—xor - ‘ I -
xor length — ii
(a) (b) <l

Figure 1: Grey marks visible and black marks invisible. (a) The close enough threshold function:
0 times the relative length of the XOR of S; and S». (b) Theextrapolate function.

3 Experimental Results

In our experiments we use the following natural error measure. Let R}, be an approximation
of R, obtained by some approximation algorithm, where R, is the region visible from p. Then
the error associated with R, is the area of the XOR of R, and R,, divided by the area of
the disk of radius [, where [is the range of sight that is in use. See Figure 2.

[== Frame of VFB |E||§||Z| [5 Frame of VFB <2> |E||§||Z| (% <4 Frame of ¥FB <3= |E||E|Z|
S TR
- .
o N
e -
" \."
f '. ¥
— A ,
m— ~mm— - ®

Figure 2: Left: the exact region R,; Middle: the approximate region Rzlo computed by our algo-
rithm; Right: XOR(R),, R,).

We compared between our radar-like algorithm and the corresponding fixed-angle version.
That is, we ran our algorithm, with several values of «, on a collection of terrains, view points,
and ranges of sight. For each application of our algorithm, we also ran the fixed-angle version
with angle 360/n, where n is the number of sample rays (i.e., cross-section operations) that
were used in this application. We then computed the errors for the two regions that were
obtained. Figure 3(a) shows some typical results. From these results it is clear that our

123

algorithm is better is situations of “under sampling,” where the number of sample rays is
small. Both algorithms and the error computation were implemented in Java. (The error
computation is actually a grid-based approximation of the error measure defined above.)

We are currently comparing our algorithm (and several variants of it) with other (known)
algorithms for approximating the visible region, including the z-buffer algorithm [10] and an
algorithm (see Figure 3(b)), that is in some sense orthogonal to our algorithm, that uses
circles of increasing radii instead of cross-sections [5]. A report on these experiments will be
included in the full version of this paper.

Radar-like vs. FA - 70 cross sections Radar-like vs. FA - 140 cross sections
180 0.90
N 0.30
— ::zg — e
Pt T - ey T
= - 120 e ~ 060 =
—- — 100 % = = —— 050 %.
— 080 E = 0.40 E
050 —— 0.30
040 0.20
020 010
0.00 ; T ; T 0.00
0 s00 1000 1500 3500 3500 0 SO0 1000 1500 2500 3500
radius " radius
-= -Radarlke —e— FA |

(a)

(b)

Figure 3: (a) Our algorithm is more accurate than the corresponding fixed-angle version. (b) Cir-

cles of increasing radii approach vs. Radar-like approach.

Acknowledgment. The authors wish to thank Ofir Ganani and Maor Mishkin who helped
implementing the radar-like algorithm.

References

(1]

B. BenMoshe, M.J. Katz, J.S.B. Mitchell and Y. Nir. Visibility preserving terrain sim-
plification. Proc. 18th ACM Sympos. Comput. Geom. 303-311, 2002.

D. Cohen-Or and A. Shaked. Visibility and dead-zones in digital terrain maps. Computer
Graphics Forum 14(3):171-179, 1995.

R. Cole and M. Sharir. Visibility problems for polyhedral terrains. Journal of Symbolic
Computation 7:11-30, 1989.

L. De Floriani and P. Magillo. Visibility algorithms on triangulated digital terrain model.
International Journal of GIS 8(1):13-41, 1994.

L. De Floriani and P. Magillo. Representing the visibility structure of a polyhedral terrain
through a horizon map. International Journal of GIS 10:541-562, 1996.

F. Devai. Quadratic bounds for hidden line elimination. Proc. 2nd ACM Sympos. Comput.
Geom. 269-275, 1986.

R. Franklin, C.K. Ray and S. Mehta. Geometric algorithms for siting of air defense missile
batteries. Technical Report Contract No. DAAL03-86-D-0001, 1994.

P. S. Heckbert and M. Garland. Fast polygonal approximation of terrains and height
fields. Report CMU-CS-95-181, Carnegie Mellon University, 1995.

M.F. Goodchild and J. Lee. Coverage problems and visibility regions on topographic
surfaces. Annals of Operation Research 18:175-186, 1989.

N. Greene, M. Kass and G. Miller. Hierarchical z-buffer visibility. Computer Graphics
Proc. Annu. Conference Series 273-278, 1993.

A.J. Stewart. Fast horizon computation at all points of a terrain with visibility and
shading applications. IEEE Trans. Visualizat. Compt. Graph 4(1):82-93, 1998.

124

Pheromone-guided Dispersion for Swarms of Robots

Tien-Ruey Hsiang* Marcelo Sztainberg*

Abstract

We propose and analyze an algorithm for dispersing a swarm of robots in an unknown
environment R. We use simple robots with the ability to leave a pheromone behind. Robots
can get local information with their sensors but cannot communicate with other robots. The
primary objective is to minimize the makespan, that is, the time to fill the entire region. We
achieve a competitive ratio of O(log (k + 1)) where k is the number of doorways.

1 Introduction

Multiagent robotics has been an active field in the recent years and there has been many works
on distributed control and coordination of a set of autonomous robots. Principe et al. [6, 16] and
Suzuki et al. [5, 19, 20] have studied pattern formation in distributed autonomous robotics under
various models of robots with minimal capabilities. The related flocking problem, which requires
that a set of robots follow a leader while maintaining a formation, has been studied in several
recent papers; see, e.g., [1, 2, 10] Wagner et al. [3, 21, 22, 23] developed multi-robot algorithms,
inspired by ant behaviors, for searching and covering. Payton et al. [15, 14] propose the notion of
“pheromone robotics” for world-embedded computation.

A natural problem that arises in the study of ”swarm robotics” is how to obtain a quick
dispersal and filling of the environment while maintaining the connectivity of the robot swarm.
That is, devise algorithms to reposition robot swarms in an uknown domain such that every point
of the domain is seen by some robots and for any given pair of robots we can establish a visibility
chain in which consecutive robots can see each other.

Motivations for this behavior can be found on a diverse spectrum of applications for different
domains: space exploration, medicine, military, and industry, just to name a few. Common
applications include exploration and map extraction of an unknown domain, mine sweeping, and
guarding.

A big proportion of previously developed dispersion algorithms rely on greedy strategies such as
go-for-free space [13], where robots move to fill unoccupied space; artificial physics [18] strategies,
where neighboring robots exert “forces” on each other: repulsion forces if the robots are closer
than the target separation, and attraction forces if the neighboring robots are farther away (and
the swarm is in danger of becoming disconnected); and potential fields [11, 17]. Almost all of them
require communication, albeit local, within pairs of robots

Our goal is to develop dispersion algorithm on discrete environments. A discrete environment
is composed of squares or pizels that form a connected subset of the integer grid. There is at most
one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter domain
R through k > 1 door pizels, each of which acts as an infinite source of robots.

Our robots can be implemented with O(1)-size memory and O(1)-size sensor range. There is
no direct communication between robots, instead, they leave pheromones as traces for others to
follow. The robots are decentralized and move only according to local information.

*Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600,
email: {trhsiang, mos}Qams.sunysb.edu

125

2 Pheromone-guided Dispersion

As the robots move through the domain, they leave a pheromone trail behind. At each step
a robot surveys its local neighborhood (Figure 1) and decides its next move according to the
positioning of the pheromones, other robots, and obstacles. This process does not require direct
communication between robots. For the case of multiple doors, the pheromones are differentiated
by teams corresponding to each particular doorway.

"HON BON |
$ § §

T HON NON)

4 9 9

L OO WON |

Figure 1: Local information available to a robot (at the center in gray) at a particular step of the
simulation. Diamonds represent pheromones, double circled points represent stopped robots, and
black points are currently moving robots

The main goal for a robot is to find a spot in the domain where it can stop, preferrably at the
shortest possible amount of traveled distance. This stopping spot can only be found at the left or
the right of the direction the robot is moving, so not to interrupt the flow of its line. To keep the
robots advancing through the domain and to avoid blocking paths, a spot is available for stopping
only if its surrounding spots do not hold a stopped robot. (Figure 2)

If a robot does not have spot available to stop it should try to keep moving following these set
of priority rules:

e Follow the path is was moving on. Otherwise...
e Try to make a turn that does not conflict with other teams of robots. Otherwise...

e Wait for a constant number of iterations. If there is no possibility of continuing it should
stop.

The pheromones that robot utilize to make trails contain only the team-tag information. Each
pheromone has a constant size lifetime after which it dissapears. Since each moving robot has
another robot following behind at a close distance pheromones get replaced by newer ones as the
trail keeps moving.

Summary of Results With a simpler heuristic and a lack of communication our algorithm
obtained similar results as those expressed by Hsiang et al [12]. We prove that our algorithms
have optimal competitive ratio of O(log (k + 1)) where k is the number of doorways. By having
the robots searching for the closest stopping place we ensure a more efficient use of individual
resources (power supply), while achieving a complete stop for the run with no need of general
communication.

126

Simulation Area

Simulation Area

e
-

TS esSEEES

-

-
-
-

L] - .L'
. .
L

-
-
-

V

-

- -

. -
- -

. =
- -

- =

-

. -

LR B N N N
.
.

LR N -
L]
L]
-
L]

L o

-

il

[RN] » » 4
Pte -— . -y
» sestets » @
-
IEERERERERE] »
[E R X N] L]
IEERERERERE] »
[E R X N] L]
1!1 svtetates » @
[E R X N] L] -
sileevintatele @
[} L] L] L] L]
sietetatatele
[} L] L] L] L]
sleteteteatels » » » @
LR R N] L] e ..
299 vsistatewe » » » @

—* T

P R L L L R

\V4

Figure 2: The figure on the left illustrates an instance of the simulation. Robots are entering
the domain through the door located at the bottom center of the figure. The figure on the right
expands the original at the left with the display of the pheromones that guide the robots.

3 Future Work

e We modified our heuristic, requiring for a robot to stop only when it does not have any other
place to move to.

e We are implementing a new strategy that involves random branching, in which teams coming
from the same doorway, split and branch randomly along the march.

e Similar heuristics are being implemented for continuous environments. For those environ-
ments the step size, and the steering angle of a robot are subject to measurement errors.

References

[1] T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot teams. IEEE
Transactions on Robotics and Automation, 14(6):926-939, 1998.

2]

O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better flocking behaviors using rule-based
roadmaps. In Proc. Fifth International Workshop on Algorithmic Foundations of Robotics,

2002.

A. M. Bruckstein, C. L. Mallows, and I. A. Wagner.

American Mathematical Monthly, 104(4):323-343, 1997.

Probabilistic pursuits on the grid.

X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment I: The
rectilinear case. Journal of the ACM, 45(2):215-245, Mar. 1998.

A. Dumitrescu, I. Suzuki, and M. Yamashita. High speed formations of reconfigurable mod-
ular robotic systems. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA 02), pages 123-128, 2002.

[6] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed coordination of a set of
autonomous mobile robots. In Proc. IEEE Intelligent Vehicle Symposium (IV 2000), pages
480-485, 2000.

[7] D. Gage. Many-robot systems. http://www.spawar.navy.mil/robots/research/manyrobo/manyrobo.html.

[8] D. Gage. Sensor abstractions to support many-robot systems. In Proceedings of SPIE Mobile
Robots VII, Boston MA, 18-20 November 1992, Volume 1831, pages 235—246, 1992.

[9] D. Gage. An evolutionary strategy for achieving autonomous navigation. In SPIE Proc. 3525:
Mobile Robots XIII, Boston MA, November, 1998.

[10] V. Gervasi and G. Prencipe. Flocking by a set of autonomous mobile robots. Technical Report
TR-01-24, University of Pisa, Dipartimento di Informatica, Oct. 2001.

[11] A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile sensor network deployment using
potential fields: A distributed scalable solution to the area coverage problem. In H. Asama,
T. Arai, T. Fukuda, and T. Hasegawa, editors, Proc. 6th International Symposium on Dis-
tributed Autonomous Robotic Systems, page to appear, Fukuoka, Japan, 2002. Springer-
Verlag.

[12] T.-R. Hsiang, E. M. Arkin, M. Bender, S. P. Fekete, and J. S. B. Mitchell. Algorithms for
rapidly dispersing robot swarms in unknown environments. Fifth International Workshop on
Algorithmic Foundations of Robotics, December 15-17 2002.

[13] N. Jovanovic, T.-R. Hsiang, and M. Sztainberg. Experimental comparison of dispersion pro-
tocols for robot swarms. Technical report, Stony Brook University, 2002.

[14] D. Payton, M. Daily, R. Estkowski, M. Howard, and C. Lee. Pheromone robotics. Autonomous
Robots, pages 319-324, 2001.

[15] D. Payton, R. Estkowski, and M. Howard. Progress in pheromone robotics. Proc. 7th Inter-
national Conference on Intelligent Autonomous Systems, 2002.

[16] G. Prencipe. Distributed Coordination of a Set of Autonomous Mobile Robots. PhD thesis,
Dipartimento di Informatica, Universita degli Studi di Pisa, 2002.

[17] J. H. Reif and H. Wang. Social potential fields: A distributed behavioral control for au-
tonomous robots. Robotics and Autonomous Systems, 27(3):171-194, 1999.

[18] W. Spears and D. Gordon. Using artificial physics to control agents. In In IEEE International
Conference on Information, Intelligence, and Systems., 1999.

[19] K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric patterns with
many mobile robots. Journal of Robotic Systems 13, 3, pages 127-139, 1996.

[20] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 28(4):1347-1363, 1999.

[21] I. Wagner and A. Bruckstein. Cooperative cleaners: a study in ant robotics. Technical Report
CIS9512, Technion, 1995.

[22] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by ant-robots using
evaporating traces. IEEE Transactions on Robotics and Automation, 15(5):918-933, 1999.

[23] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Efficiently searching a graph by a smell-
oriented vertex process. Annals of Mathematics and Artificial Intelligence, 24(1-4):211-223,
1998.

[24] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Mac vs. pc - determinism and random-
ness as complementary approaches to robotic exploration of continuous unknown domains.
Technical Report CIS9814, Technion, 1998.

128

Orthogonal Segment Stabbing*
Matthew J. Katz! Joseph S. B. Mitchell> Yuval Nir!

!Department of Computer Science
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
{matya,yoval}@cs.bgu.ac.il
?Department of Applied Mathematics and Statistics
State University of New York, Stony Brook, NY 11794-3600

jsbm@ams.sunysb.edu

1 Introduction

We consider various stabbing problems for orthogonal line segments in the plane. Let H,V be sets
of horizontal and vertical segments. In the first problem that we consider, one has to find a subset
S of HUV of minimal size, such that for each segment s € H UV, either s € S or s is stabbed
by some segment s’ in S. We refer to this problem as the Orthogonal Segment Dominating Set
problem (OSDS). This problem is closely related to a guarding problem posed by Frank Hoffmann.
In Hoffmann’s problem, the sets H and V represent a connected network of horizontal and vertical
streets, and one has to find a patrol path of minimal length, such that every street point (i.e.,
a point on an input segment) is seen from some point on the path. In another problem that we
consider, one has to find a minimal subset of vertical segments that stab all horizontal segments
(assuming such a set exists). We refer to this problem as the Orthogonal Segment Vertex Cover
problem (OSVC).

In Section 2 we show that OSDS and OSVC are NP-complete, by reducing them to vertex
dominating set for planar bipartite graphs and to vertex cover for planar graphs, respectively. Both
reductions are based on a representation theorem (Theorem 2.1) due to Ben-Arroyo Hartman et
al. [1] and to de Fraysseix et al. [4], and on the corresponding algorithmic result of de Fraysseix et
al. [5]. This theorem states that any planar bipartite graph G = (A, B; E) can be represented by
a collection of |A| horizontal segments and |B| vertical segments, such that a horizontal segment
and a vertical segment corresponding to vertices a and b stab each other if and only if (a,b) € E.

We obtain two variants of OSVC by extending the segments in V' to downwards-directed rays,
or by extending the segments in H to rightwards-directed rays. In other words, let H be a set
of horizontal segments and let R be a set of downwards-directed rays. In the stabbing segments
with rays problem one has to find a minimal subset of R that stabs all segments in H, and in the
stabbing rays with segments problem one has to find a minimal subset of H that stabs all rays
in R. We present polynomial-time solutions to both these problems that are based on dynamic
programming. In this extended abstract we only sketch the solution to the former problem (Section
3), and completely omit the solution to the latter problem, which is significantly more complicated.

Both these problems have an equivalent formulation involving a set T of (possibly intersecting)
axis-parallel rectangles and a set P of points. Given such sets, the corresponding piercing problem
(i-e., compute a minimal subset P’ of P, such that each rectangle is pierced by a point in P') and

*Research by M.K. and J.M. is partially supported by grant no. 2000160 from the U.S.-Israel Binational
Science Foundation. Research by M.K. and Y.N. is also partially supported by the MAGNET program of the
Israel Ministry of Industry and Trade (LSRT consortium). Research by J.M. is also partially supported by HRL
Laboratories, NASA Ames Research, National Science Foundation, Northrop-Grumman, Sandia National Labs,
Sun Microsystems.

129

the corresponding covering problem (i.e., compute a minimal subset 7" of T', such that each point
is covered by a rectangle in T”) are known to be NP-complete (see [3]).

We restrict these problems by adding the assumptions that all rectangles in 7" are “hanging”
from a mutual line. With this assumption, the piercing problem becomes the stabbing segments
with rays problem, and the covering problem becomes the stabbing rays with segments problem.
(For each point p € P draw a downwards-directed ray emanating from p, and for each rectangle
t € T keep its bottom edge only).

2 Stabbing Segments with Segments

In this section we prove that OSVC and OSDS are NP-complete. Our proofs are based on the
following representation theorem due to Ben-Arroyo Hartman et al. [1] and to de Fraysseix et al.
[4], and on the corresponding algorithmic result of de Fraysseix et al. [5].

Theorem 2.1 [1, 4] Any planar bipartite graph G = (A, B; E) can be represented by a set I(G)
of |A| disjoint horizontal segments and |B| disjoint vertical segments, such that two segments a
and b stab each other if and only if (a,b) € E. The set I(G) is said to be a grid representation of
G.

Theorem 2.2 [5] Let G = (A, B; E) be a planar bipartite graph. One can compute a grid
representation I(G) of G in O(|A| U |B|) time.

2.1 OSVC is NP-complete

Let H be a set of horizontal segments and let V' be a set of vertical segments. The Orthogonal
Segment Vertex Cover problem (OSVC) asks for a minimal subset of V' that stabs all segments in
H.

Theorem 2.3 OSVC is NP-Complete.

Proof: We prove that OSVC is NP-complete by reducing it to Minimum Vertex Cover for
planar graphs, which is known to be NP-complete [7]. Let G = (V, E) be a planar graph. By
placing a new vertex b, in the middle of each edge e of E, we obtain a planar bipartite graph
G' = (A,B; F), where A =V, B corresponds to E, and there is an arc between a and b if and
only if a is adjacent to the edge of G corresponding to b. It follows from the construction that G’
is planar and bipartite.

Next we compute a grid representation I(G') = VUH of G’, using the linear-time algorithm of
[5]. (The existence of such a representation follows from Theorem 2.1 above.) This completes the
reduction, since a minimum vertex cover for G becomes a minimum subset of A that dominates
all vertices in B, which in turn becomes a solution to OSVC (i.e., a minimum subset of V' that
stabs all segments in H). O

2.2 OSDS is NP-complete

Let H be a set of horizontal segments and let V' be a set of vertical segments. The Orthogonal
Segment Dominating Set problem (OSDS) asks for a minimal subset of S = H UV, such that for
each segment s € H UV, either s € S or s is stabbed by some segment s’ in S.

Theorem 2.4 OSDS is NP-Complete.

Proof: We prove that OSDS is NP-complete by reducing it to Minimum Dominating Set for
planar bipartite graphs. Let G = (A, B; E) be a planar bipartite graph and let I(G) = VUH be a
grid representation of G. (By Theorem 2.1 and Theorem 2.2, I(G) exists and can be computed in
linear time.) Assuming that Minimum Dominating Set for planar bipartite graphs is NP-complete

130

we are done, since a minimum dominating set for G becomes a solution to OSDS. However, our
search for a proof of the NP-completeness of Minimum Dominating Set for planar bipartite graphs
was unsuccessful, so we include below a simple proof of this claim. This proof appears implicitly
in a paper by Kariv and Hakimi [2]; it is based on the NP-completeness of Minimum Vertex Cover
for planar graphs [7].

We cut each edge (u,v) of the planar graph G and insert a square a,z,b,y as shown in Figure 1.
Clearly, the graph G’ that is obtained remains planar. It is also bipartite. Moreover, a minimum
vertex cover for G can easily be transformed to a minimum dominating set for G, by adding, for
each edge (u,v) of G, either the vertex a or the vertex b. If u is not in the minimum vertex cover
for G, we add a, if v is not in the minimum vertex cover, we add b, and otherwise we pick one of
the two arbitrarily. |

o
<

Figure 1: Construction for proof of Theorem 2.4.

3 Stabbing Segments with Rays

Let S be a set of horizontal segments and let R be a set of downwards-directed rays. For a ray
r € R, let z(r) and y(r) denote the = and y values, respectively, of r’s origin. For a segment s € S
let h(s) denote its height, and let I(s) and r(s) denote the x values of its left and right endpoints,
respectively. A ray is mazimal if it is above the highest segment.

In the Stabbing Segments with Rays problem (SSR) one has to find a minimal subset R’ C R,
such that, for each segment s € S, there exists a ray r € R’ that stabs it.

Lemma 3.1 Any solution consists of a maximal ray and solutions for two disjoint subproblems.

Proof: Let R* be a solution for < S, R > and let r € R* be a ray that stabs a segment of
maximum height in S. (r is by definition a maximal ray.) Any segment that is not stabbed by
r is either completely to the left or completely to the right of r, and any ray in R\ {r} is either
to the left or to the right of r. Therefore if R;, R, are solutions for the resulting left and right
subproblems, respectively, then {r} U R; U R, is a solution for < S, R >. O

We present a top-down recursive algorithm for computing a solution for SSR. By employing
dynamic programming a bottom-up non-recursive algorithm can be obtained, that is more efficient
in terms of space.

A subproblem < Left, Height, Right > contains all segments and rays of the problem < S, R >
that are contained in the interior of the corresponding (infinite) vertical slab, and whose height
is less or equal to Height. According to some simple observations that are omitted from this
version, we may assume that the problem < S, R > is given by < 0,|S| + |R|,2|S|+ |R| + 1 >,
i.e., all endpoints are unique integers in the range [1,2|S| + | R|] for the z-values, and in the range
[1,]S] + |R]] for the y-values.

The algorithm examines the highest ray r within the subproblem < Left, Height, Right >.
If r is not maximal (within the subproblem), then the subproblem has no solution. Else, the

131

algorithm compares between the sizes of the subsets of R obtained by either including r or not
including r (see Figure 2). If r is included, then the solution obtained is the union of {r} and the
solutions for the subproblems < Left, Height — 1, z(r) > and < z(r), Height — 1, Right > (that
do not contain segments that are stabbed by r). And if 7 is not included, then the solution for
the subproblem is < Left, Height — 1, Right >. We omit the analysis of the algorithm from this
version, and only mention that its time complexity is O(|S|?).

Maximal ray Maximal ray

Figure 2: Subproblems resulting from (a) choosing the maximal ray r and (b) not choosing r.

Acknowledgement

We wish to thank Arie Tamir for helpful discussions.

References

[1] I. Ben-Arroyo Hartman, I. Newman and R. Ziv, On grid intersection graphs, Discrete Math-
ematics 87, 1991, 41-52.

[2] O. Kariv and L. Hakimi, Algorithmic approach to network location problems, STAM J. Applied
Mathematics 37, 1979, 513-538.

[3] R. J. Fowler, M. S. Paterson and, S. L. Tanimoto, Optimal packing and covering in the plane
are NP-complete, Information Processing Letters, 12(3), 1981, 133-137.

[4] H. de Fraysseix, P. O. de Mendez, and J. Pach Representation of planar graphs by segments
Intuitive Geometry, Coll. Math. Soc. J. Bolyai 63, 1991, 109-117.

[5] H. de Fraysseix, P. O. de Mendez, and J. Pach A left-first search algorithm for planar graphs
Discrete Computational Geometry, 13, 1995, 459-468.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and co., New York.

[7] M. R. Garey and D. S. Johnson, Some simplified NP-complete graph problems, Theoretical
Comp. Sci., 1, 1976, 237-267.

[8] R. Hassin and N. Megiddo, Approzimation algorithms for hitting objects by straight lines,
Discrete Applied Mathematics, 30, 1991, 29-42.

132

Alternating Paths along Orthogonal Segments

Csaba D. Té6th!
toth@cs.ucsb.edu

Abstract

It was shown recently that in the segment endpoint visibil-
ity graph Vis(S) of any set S of n disjoint line segments in
the plane, there is an alternating path of length ©(log n),
and this bound best possible apart from a constant factor.
This talk focuses on the variant of the problem where S
is a set of n disjoint azis-parallel line segments, and shows
that the length of a longest alternating path in the worst

case is Q(y/n/2) and O(n/2 + 2).

1 Introduction

Given a set S of disjoint line segments in the plane,
an alternating paths is a simple polygonal path
p = (v1va, ..., v;) such that ve;_jve; € S, i =
1,...,|k/2] and va;v2;41 does not cross any segment
of Sfori=1,...,|(k-1)/2].

It is known that there are sets of disjoint segments
that do not admit an alternating Hamiltonian path.
Hoffmann and T6th [3] proved recently, answering a
question of Bose [1, 6], that for any set S of n dis-
joint line segments in the plane, there is an alternat-
ing path running through at least [log,(n +2)] — 1
segments of .S, and this bound is best possible apart
from a constant factor.

The O(logn) upper bound construction [6, 3] is a
set S of line segments arranged so that every seg-
ment s € S has two endpoints on the convex hull
conv(|JS), and therefore any alternating path con-
taining segments from both sides of s should go
through s as well. In that construction n segments
have Q(n) different orientations. If all segments are
axis-parallel, we can prove a better lower bound:

Theorem 1 For any set S of n disjoint azis-parallel
segments in the plane, there is an alternating path
running through \/n/2 segments of S.

Restricting the general upper bound construction
to axis-parallel segments, we obtain an upper bound
of O(n/2 + 2) (see Fig. 1), which leaves room for
further improvements from below or from above.

IDepartment of Computer Science, University of California
at Santa Barbara, CA-93106.

Figure 1: Axis-parallel segments clipped to a disk.

2 Axis-parallel segments

We may assume that there are at least n/2 horizontal
segments in S. Let H, H C S, denote their set.
For two segments s € H and t € H, we say that s
supports t if there is an z-monotone and y-monotone
curve connecting a point of s to a point of ¢ such that
it does not cross any segment of S. (This includes
the case where there is vertical visibility between s
and t.) We say that s < ¢ iff there is a sequence
(s = so,51,82,...,8 =t) in H such that s; supports
Si+1,1=0,1,2,...,7—1 (Fig. 2). The relation < is a
partial order in H. (A similar order was used in [5]).

‘ t

Figure 2: s < t.

By Dilworth’s theorem [2], there is either (i) a chain
or (ii) an anti-chain of size \/n/2 with respect to <.

133

(We note that the size of the maximal chain and anti-
chain can be y/n/2 simultaneously.) In either case,
we show that all segments in the chain or anti-chain
can be linked together in a common alternating path.

In case (i), let si,s2,...,s, be a sequence of r,
r > 1/n/2, segments of H such that each s; supports
si+1- Denote the left and right endpoint of s; by a;
and b;. Let (i), be the z- and y-monotone curve
connecting s; and s;y1 such that the two endpoints
of (i) are v; € s; and w; € s;41 (fig. 2).

Figure 3: The initial paths 7 (3).

For every i, place a rubber band along the path
(aiv;) U y(i) U (w;bix1). Then let the rubber band
contract while its endpoints stay pinned down at a;
and b; 1 with the constraint that it cannot cross any
segment of S. The rubber band forms a polygonal
path 7(7) through segment endpoints lying between
s; and s;41 (Fig. 4). Notice that () remain z- and
y-monotone.

Figure 4: Paths 7 (i) after one iteration.

Next, we expand recursively every 7 (i) into an al-
ternating path between s; and s;;+1. We want to make
sure that the concatenation of the resulting r — 1 al-
ternating paths is also a simple alternating path, that
is, the » — 1 alternating paths are pairwise disjoint.

Consider a path 7 (7). If there is a segment § which
has exactly one endpoint v(8) with (i), then we mod-

ify m(i) to go along § and visit the second endpoint of
5. We call this operation an ezpansion of 7(i). The
expansion practically means that we pick the segment
of 7(7) lying before or after the common vertex v(§)
and pull the rubber band to the second endpoint of
§ with the constraint that it cannot cross any other
segment of S. We choose the directions of the ex-
pansion as follows: If § is horizontal and lies on the
left (right) side of 7 (¢) then we expand the segment
of 7(i) above (below) v(8). If § is vertical and lies
on the left (right) side of 7 (i) then we expand the
segment of 7 (i) to the left (right) of v(8) (see Fig. 4
and 5).

Figure 5: The resulting alternating path.

Inevitably, when we expand a segment of (i) to
visit a second endpoint of §, our path may hit other
segment endpoints between s; and s;41. The choice
of directions of the expansion ensure that 7 (¢) never
hits a segment endpoint that is already visited by
m(i) or a second endpoint of a segment whose one
endpoint is in 7(¢). We maintain two invariants:

1. Every piece of (i) which does not lie along a
segment of S is - and y-monotone;

2. If an § has one common point v(§) with (i) and
lies on the left (right) of 7 (i), then v(8) is its
right or lower (left or upper) endpoint.

One can show that repeating the expansion opera-
tion on the path 7 (i), we end up with r — 1 pairwise
disjoint alternating paths between the pairs (s;, $;11)-

In case (ii), note that any two segments in an anti-
chain are separated by a vertical line, therefore the
segments in the anti-chain have a linear left-to-right
order. Consider the r, r > y/n/2, segments of an
anti-chain A = {s1,$2,...,s,} C H labeled accord-
ing to this order (Fig. 6). Denote the left and right
endpoint of each s; by a; and b;.

Observe that s; £ s;y1 and s; ¥ s;41 implies
that there is no z- and y-monotone curve between

134

s; and s;+1 which avoids vertical segments but pos-
sibly crosses horizontal segments. Specifically, if the
y-coordinate of s; is smaller than that of s;y1, then
there is staircase (axis-parallel z- and y-monotone)
curve between b; and a;y; whose every vertical seg-
ment is along a vertical segment of S (middle of
Fig. 6). Informally, this staircase curve blocks any
curve which would imply a relation s; < s; 1. (If the
y-coordinate of s; is larger than that of s;41, there is
no specific condition.)

—

=,

Figure 6: Linear oder in an anti-chain.

For every i, 1 = 1,2,...t — 1, we connect b; and
ai;+1 by a rubber band p(i): If b; is above a;+1 then
we find a monotone descending polygonal path that
can cross vertical segments but must avoid horizon-
tal segments. If b; is below a;y; then consider the
polygonal staircase path from b; to a;41 as described
above. In both cases, let us denote this polygonal
path by o(7) (dashed in Fig. 6).

Figure 7: The initial curve (i) with monotone de-
scending visibility edges.

Recursively, at every intersection point of o(i) with
a vertical segment vw, we force the rubber band (i)
to pass through v and w such that (i) is ascending
along vw. In this way, we obtain a curve m(i) that
does not cross any segment of S and whose pieces not
lying along segments of S are z-monotone increasing
and y-monotone descending.

Finally, we expand recursively every 7 (i) into an al-
ternating path between b; and a;41 using the similar
expanding operations as in case (i). Consider a seg-
ment § € S with one common point v(8) with «(i). If
§ is horizontal and lies on the left (right) side of 7 (i)
then we expand the segment of 7(i) below (above)
v(8§). If § is vertical and lies on the left (right) side of
7(1) then we expand the segment of (i) the the left
(right) of v(8) (Fig. 8).

Figure 8: Winding the rubber band around obstacles.

We can maintain similar invariants as in case (i)
(now, portions of 7 (¢) not lying along segments of S
are monotone descending). One can show that the
expansion of 7(i) does not touch any segment end-
point twice, every resulting path is simple. The in-
variants also ensure that all —1 resulting alternating
paths are pairwise disjoint. This completes the proof
of Theorem 1.

References

[1] E.D. Demaine and J. O’Rourke, Open Problems
from CCCG’99, in: Proc. 11th Canadian Conf.
on Comput. Geom. (Vancouver, 1999).

[2] R. Dilworth, A decomposition theorem for par-
tially ordered sets, Ann. of Maths. 51 (1950),
161-166.

[3] M. Hoffmann and Cs. D. Téth, Alternating
paths through disjoint line segments, submit-
ted, presented at the 18th FEuropean Workshop
on Computational Geometry (Warsaw, 2002).

[4] M. Hoffmann and Cs. D. Téth, Segment end-
point visibility graphs are Hamiltonian, Comput.
Geom. Theory Appl., in print.

[5] R. Tamassia, I.G. Tollis, A unified approach to
visibility representations of planar graphs, Dis-
crete Comput. Geom. 1 (1986), 321-341.

[6] J. Urrutia, Algunos problemas abiertos (in Span-
ish), in: Actas de los IX Encuentros de Ge-
ometria Computacional (Girona, 2001).

135

136

Shortest Paths in Polygonal Domains with Polygon-Meet
Constraints

Ramtin Khosravi* Mohammad Ghodsit

Department of Computer Engineering
Sharif University of Technology
P.O. Box: 11365-9415,

Tehran, Iran.

Tel: +98 (21) 600-5616

Abstract

In this paper, we study the problem of finding the shortest path in a polygonal domain in which the
path should meet (touch or cross) a simple polygon in the domain. Our method uses the continuous
Dijkstra paradigm and reflected wavefronts to solve the problem in worst-case optimal time O(nlogn).

1 Introduction

Finding the shortest path between two points is a basic problem in computational geometry and has
many applications in different areas such as motion planning and navigation. The problem is studied
over various geometric domains such as simple polygons, polygonal domains, polyhedral surfaces, etc.
Also several variations exists according to the metric for computing distances, and different constraints
applied to the solution path. Examples of such restrictions are curvature constraints [2] or altitude
constraints [1].

We study a special kind of constraints called polygon-meet constraints, in which the shortest path
from source to destination should meet a given polygon in a polygonal domain. By meeting a polygon,
we mean the path should have non-empty intersection with the closure (interior plus boundary) of a
polygon, i.e. either touch the boundary of the polygon and reflect, or cross a part of the polygon.

One possible applications are resource-collection in which an object moving from a source point to a
destination point has to collect some resources found in a certain region. Another application is visibility-
related constraints in which the polygon to be met is the visibility polygon of a point or an object in
the domain. Such a case may arise when direct visibility is needed between the moving object and the
viewpoint, such as in communications, or guarding applications.

Our approach here is to use the continuous Dijkstra paradigm for finding the shortest polygon- meeting
path between two points. As a result of using this paradigm, a subdivision of the domain can be built
to answer single-source shortest polygon-meeting path queries. The idea of the method is to propagate
a wavefront from the source until it touches the boundary of the target polygon. Upon touching the
boundary, the original wavefront is marked as met and is propagated ignoring future contacts with the
target polygon. Besides the original wavefront, its reflected version is also propagated in the opposite
direction which is also marked met. By met wavefront we mean the set of points in the free space to
which the length of the shortest polygon-meeting path is § (Figure 1). The reflected part corresponds
to those point whose shortest polygon-meeting path from source has been touched the boundary of the
target polygon and has been reflected. If we use the method of Hershberger and Suri [3] for wavefront
propagation, we obtain a time-bound of O(nlogn) and O(nlogn) space for our problem which is worst-
case optimal. As the size of the constructed map is linear, each query can be answered in O(logn) time.
To the best of our knowledge, no other result has been available on this problem.

*ramtin@mehr.sharif.edu
Tghods i@sharif.edu

137

Figure 1: met wavefront propagation: the dashed circle is the wavelet generated by vertex v, the gray
area belongs to the target polygon P, the solid arcs are met wavelets. Arrows show the direction of
wavefront expansion.

P
\ q 7

.
S

Figure 2: The linearity interval I (shown with heavy solid line) is a connected subset of the boundary of
P such that the shortest path from s (resp. t) to its points passes u (resp. v) as the last vertex. ¢ € I is
the point with minimum total shortest path distance to s and t.

A similar problem is studied in [5] where the constraint is to meet the visibility region of a point. The
problem is considered in several domains: simple polygons, polygonal domains, and polyhedral surfaces.
The method is based on partitioning the boundary of the target polygon (the polygon to be met) into
linearity intervals (L-intervals), such that the points of each interval has the property that their shortest
paths to both source and destination has the same combinatorial structure. Because of this property, one
can find a point ¢(I) on an L-interval I that has the minimum total distance to source and destination
in constant time. So, finding the shortest polygon-meeting path can be done by taking minimum over all
L-intervals.

In the case of polygonal domains, the method mentioned yields to the time bound of O(nlogn) which
is similar to the bound obtained using the algorithm presented in the current paper. The advantage of
the current method is in generating the shortest polygon-meeting path map which cannot be generated
using the previous method.

2 Preliminaries

In this section we review some related terminology which is borrowed from [3], since our method relies on
the shortest path algorithm given there. Suppose O = {O1,0a,...,0} be the planar set of polygonal
obstacles in the domain with distjoint closures, and s be the source point. Also suppose P be the target
polygon to be met by the path. The total number of vertices in the obstacle polygons as well as the
target polygon is assumed to be n. The plane minus the interior of all obstacle polygons is called the
free space. Given a query point ¢, our goal is to find the shortest path between s and ¢ which resides
completely in the free space, having non-empty intersection with the closure of the target polygon P.
The shortest path map of the source point s, denoted by SPM(s), is a linear-size subdivision of the
free space into regions (cells) such that the shortest path to all the points in one cells has the same

138

combinatorial structure, i.e., has the same sequence of obstacle vertices along the path. The last obstacle
vertex along the path to the points in a cell is called the root of that cell. Each cell is star-shaped with
respect to its root, which lies on the boundary of the cell. The boundaries of cells consist of portions of
obstacle edges, extension segments (extensions of visibility graph edges incident on the root), and bisector
curves. The bisector curves are, in general, hyperbolic arcs that are the locus of points that have shortest
distance from two roots.

2.1 The Shortest Path Algorithm

Here we review the method of Hershberger and Suri for constructing shortest path map for a point in
polygonal domain, which can be done in worst-case optimal time O(nlogn), based on the continuous
Dijkstra method. The method simuates the expansion of a wavefront form a point source in the presence
of polygonal obstacles. The boundary of the wavefront is a set of cycles, each composed of a sequence
of circular arcs. Each arc, called a wavelet, is generated by an obstacle vertex already covered by the
wavefront; the vertex is called the generator of its wavelet. The meeting point between two adjacent
wavelets sweeps along a bisector curve, which is either a straight line or a hyperbola. Simulating the
wavefront requires processing events that change its topology. These events fall into two categories:
wavefront-wavefront collisions and wavefront-obstacle collisions.

To speed up detecting and processing these events quickly, a special subdivision of size O(n) is built on
the vertices, temporarily ignoring the line segments between them. Each cell of this subdivision, called a
conforming subdivision, has a constant number of straight line edges, contains at most one obstacle vertex,
and satisfies the following crucial property: for any edge e of the subdivision, there are O(1) cells within
distance 2|e| of e. Then the obstacle line segments are inserted into the subdivision, but maintaining
both the linear size of the subdivision and its conforming property—except now a non-obstacle edge e
has the property that there are O(1) cells within shortest path distance 2|e| of the edge. These cells
form the units of the propagation algorithm: in each step, the wavefront is advanced through one cell.
Since each cell has constant descriptive complexity, the propagation in a cell can be done efficiently.
When propagating the wavefront across a boundary edge of a cell, instead of keeping track of the exact
wavefront, two approximate wavefronts approaching the edge from opposite sides are maintained. Using
approximate wavefronts, one can detect wavefront—wavefront collisions in a small neighborhood of their
actual locations, marking those cells of the subdivision during the propagation phase. At the end of
the propagation phase, the edges of the shortest path map are computed exactly for each cell from the
collision information stored during propagation.

3 Computing Polygon-Meeting Paths

In this section we present our method for computing the shortest path with polygon-meet constraint.
As mentioned earlier, the method is based on the wavefront propagation techniques in computing the
shortest path map of the source point s. At the end of the execution, the algorithm generates the shortest
polygon-meeting path map of the source point s, which can be used to answer queries in logarithmic time.

3.1 Geometric Properties

Suppose we have a line [, and a source point x in the plane (with no obstacles). Let H be the half-plane
generated by [in which z lies. For a point y € H, we define the shortest reflective distance from z to y,
as the length of the shortest path that starts from z, meets some points of [, and continues to the point
y. It is easy to see that the locus of points y that are of shortest reflective distance ¢ from z is the part
of a circle of radius ¢ and center T that lies in H, where T is the reflection of x about [. If we consider
a segment e instead of the line [, but with the same requirement for the shortest path, there will be two
additional circular arcs generated from the two end-points of e.

Based on the above observations, we use the idea of reflecting a wavelet when colliding the boundary
of P, as well as letting it continue inside P. By original wavefront we mean the wavefront resulting
from the shortest path algorithm, ignoring the target polygon P. Original wavelets are defined similarly.
Upon collision of an original wavelet with the boundary of P, a met wavelet of one of these kinds may
be generated (Figure 3):

1. A wavelet that is essentially the part of the original wavelet that enters P.

139

Figure 3: Three kinds of met wavelets are shown using solid arcs. The lower arc is part of the original
wavefront generated by v, the upper arc is its reflected version, and the right arc (part of the small circle)
is generated upon collision of the original wavefront by the right end-point of the edge e of P.

2. A wavelet that is the reflection of the original wavelet about the edge of P with which the collision
is occured.

3. A wavelet of zero radius. This happens when the original wavelet collides a vertex of P.

We call these kind of wavelets (which are generated right after collision of original wavelets with the
boundary of P), primary met wavelets. In all of the above three forms, the primary wavelet is a circular
arc: for the first kind, the center of the arc is the same as that of original wavelet, for the second kind,
it is the center of the original wavelet reflected about the boundary edge, and for the third kind, it is
the boundary vertex. Right after generation, primary met wavelets continue to propagate according to
known rules of wavefront propagation in the Continuous Dijkstra paradigm. New wavelets may be added
to the wavefront upon collision of met wavefronts with obstacle vertices, or may be deleted upon collision
of met wavefront with each other. We call the newly generated wavelets, secondary met wavelets. Note
that the collision of met wavelets with original wavelets are not considered during simulation.

Lemma 3.1 The number of primary met wavelets is O(n).

Proof. As stated earlier, each primary met wavelet is genereated when an original wavelet first collides
the boundary of P. Since each cell of SPM is sweeped with one original wavefront, the portions of
boundary that lie in one cell of SPM may be collided by only one original wavefront. In general, if we
overlap SPM and the boundary of P, the number of segments created on the boundary is O(n?), but as
we will show, only O(n) of these segments first collide with original wavelets. Others collide with wavelets
that have collide these O(n) segments before and therefore considered as met wavelets, not original ones.
To show that the number of segments on the boundary of P which generate primary met wavelets is
linear, consider a cell f of the SPM with root . If we connect r to vertices of P lying in f and continue
until reaching the boundary of f, we obtain a number of slabs all having the root r in common. Each slab
is intersected with a number of edges of P (possibly zero), but contains no vertex from it (Figure 4). It is
easy to see that only one intersecting segment, the closest to r, can generate primary wavelets, since the
original wavelet from r reaches all others after passing that segment and therefore considered as a met
wavelet, not an original one. So the number of generator segments is bounded by total number of slabs
in the SPM. Since each vertex of P adds at most one slab to the cell containing it, P has O(n) vertices,
and SPM has O(n) cells, this bound is O(n). Since each generator segment may generate at most two
primary met wavelets and each vertex of P generates at most one such wavelet, the total number primary

met wavelets is O(n).
O

By shortest P-meeting path map (P-SPM for short), we mean the decomposition of the free space

of the polygonal domain P to cells such that the shortest P-meeting path to all points in one cell has
the same combinatorial structure. Corresponding to two types of met wavelets (primary and secondary),

140

Figure 4: Proof of Lemma 3.1.

there are two kinds of cells in the P-SPM, namely primary and secondary cells. Boundary of all primary
cells have non-empty intersection with the boundary of P. This intersection may be a segment, or a
single vertex of P.

Lemma 3.2 The shortest polygon-meeting path map (P-SPM) has linear size.

Proof. From Lemma 3.1, we can easily conclude that the number of primary cells is linear. Since the
secondary cells are generated as the result of propagation of circular arcs, they have the same properties
as the cells of SPM, like the property stating that each obstacle vertex is the generator of at most one
cell of the SPM. The same property holds for P-SPM and we can conclude that the map has linear size.
O

Finally, note that unlike the wavefront in the original shortest path algorithm, the met wavefront in
our algorithm may be disconnected, i.e. consists of multiple closed chains of circular wavelets.

3.2 Computing P-SPM

To compute P-SPM, we use two extensions of the algorithm of [3] that the authors have mentioned:
non-point sources and multiple sources with specified release times. The algorithm runs in two phases:

1. Computing the primary met wavelets.
2. Propagating the met wavefront.

In order to compute the primary met wavelets, we first use the original wavefront propagation algo-
rithm to find the times at which the original wavefront meets the boundary of P generating primary met
wavelets. To do this, we first consider P as an obstacle in the domain. This prevents original wavelets
to enter the interior of P. At the end of this phase, the following information should be obtained and
stored:

1. The first time at which each wavelet collides the boundary P. Note that if more than one wavelet
collide a boundary edge, the times of all collisions should be stored.

2. The first time at which a wavelet collides a vertex of P.

Note that considering P as an obstacle may cause some of the generated time labels be greater than
the actual time if we let the wavefront enter P interior, but this does not make any problem, since in the
second phase, when the simulation time reaches a time label, we check whether the generator of the event
(either an edge or a vertex of P) is already met. In this case we simpley ignore the event. The correctness
of this decision follows from the fact that when we a collision occurs between an original wavelet and P,
we let the original wavelet propagete as a met wavelet. Therefore if the wavefront can reach a point of
the boundary of P by entering its interior sooner than the time label, that point is no longer a generator.

In the second phase, we consider the problem as an extension of the standard shortest path algorithm
in which there are multiple non-point sources with specified release time. Since the met wavefront may
have several independent components, we should consider the propagation in the multiple-source model.
As the times the primary met wavelets are generated may be different, these component have different
release times. Considering the algorithm based on the non-point extension is due to the fact that the first

141

two kind of primary wavelets which are generated as a result of collision of original wavelets and P edges
has non-zero radius when generated. This requires special attention for initialization of these wavelets.

In order to incorporate these characteristics into the original algorithm we should initialize the event
priority queue of the shortest path algorithm with the information obtained from the first phase such
that each primary met wavelet has one entry in the queue with an initial delay associated with it.
When processing an event of this kind, the algorithm should compute the initial distance to neighboring
conforming subdivision cells (which are constant in number). The rest of the processing is the same as
what we have in ordinary shortest path algorithm. Note that the details of multiple-source version of
the algorithm should be considered in this part to keep track of the wavefront colors and special case of
overlapping well-covering regions of initial primary wavelets.

Using the above schema for the algorithm, we can conclude our main result:

Theorem 3.1 For a polygonal domain of total complezity n, and a target polygon of size O(n), the
shortest polygon-meeting path map of the domain can be built in time O(nlogn) and O(nlogn) space.

Proof. Since the target polygon has O(n) edges, the first phase of our algorithm can be done in O(n logn)
time and space using standard shortest path algorithm. The event queue can be also initialized in
O(nlogn) time. Since the total number of met wavelets is bounded by O(n) and the size of the resulting
map is also linear, the time required to construct the map is O(nlogn) using extensions of the standard
algorithm in [3]. |

4 Conclusions

We presented an algorithm for finding a special kind of shortest path map, in which the path is constrained
to meet a target polygon, which may be a visibility polygon or a resource area in practical applications.
The algorithm was based on a variation of the Continuous Dijkstra method for constructing shortest path
maps. It is possible to study the problem in several extensions. One exension is to consider different
metrics for distance calculations, such as link—distance.

Another extension is to consider the problem in other domains such as simple polygons or polyhedral
surfaces. The case of simple polygon is particularly interesting since existence of linear time algorithms
for finding shortest paths arises the question of solving the problem in linear time. Extending the
method discussed in this paper to the case of polyhedral surfaces is also interesting since the subquadratic
algorithm of Kapoor [4] for finding the shortest path in that domain is based on the Continuous Dijkstra
paradigm.

If we consider the problem in the polygonal domain with the extension that the path should meet
several polygons, it is called T'SP with neighborhoods problem which is NP-hard and is studied in [6], but
if we fix the order of meeting the target polygons, the problem seems to be less complex, yet we do not
have any result for it.

References

[1] M. De Berg and M. Van Kreveld. Trekking in the alps without freezing or getting tired. Algorithmica,
18:306-323, 1997.

[2] Jean-Daniel Boissonnat, André Cérézo, and Juliette Leblond. Shortest paths of bounded curvature
in the plane. Internat. J. Intell. Syst., 10:1-16, 1994.

[3] John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in the plane.
Manuscript, Washington University, 1995.

[4] S. Kapoor. Efficient computation of geodesic shortest paths. In Proc. 32th Annu. ACM Sympos.
Theory Comput., pages 770-779, 1999.

[5] Ramtin Khosravi and Mohammad Ghodsi. Shortest paths with single-point visibility constraints,
Submitted for publication.

[6] C. Mata and J. S. Mitchell. Approximation algorithms for geometric tour and network design prob-
lems. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 360-369, 1995.

142

Tiling Polyominoes with Squares that Touch the Boundary

Andreas Spillner
Institut fiir Informatik, Friedrich-Schiller-Universitit Jena, 07743 Jena

spillner@minet.uni-jena.de

Abstract

We study the problem of tiling a polyomino P with squares such that every tile S has a
nonempty intersection with the boundary of P. We are especially interested in tilings with a
minimum number of squares and in efficient algorithms to find such tilings.

1 Introduction

Our setting in the present paper will be the plane R?. For a subset M C R? we denote by int(M)
the interior of M, by bd(M) the boundary of M and by conv(M) the convex hull of M. We will
consider subsets of R* which are usually called polyominoes [3].

Definition 1.1 The set € of cells in the plane is defined as
¢ = {conv({(k,1), (k+ 1,0),(k, 1+ 1), (k+1,I+1)}) : k,l€Z}

Definition 1.2 P C R? is called polyomino if and only if there exists a finite nonempty set B8 C &
such that P = UcepC and int(P) is connected.

Definition 1.3 A rectangle R C R? is called a cell rectangle if and only if R is a polyomino. A
cell rectangle which is a square is called a cell square.

Definition 1.4 Let P be a polyomino. A set T of cell squares is called a boundary touching tiling
or BTT of P if and only if

1. P =UgexS
2. VSl,Sg €T (Sl 7é Sy = int(Sl) n int(Sz) = @)
3.VSe% (Sﬁbd(P) # @)

The tiling of bounded subsets M C R? with squares that touch the boundary of M was to
our knowledge first studied in [4]. However the definition of a BTT given there allows tilings with
squares of arbitrary side length and tilings with an infinite number of squares. Then it is shown,
that every open set M C R? such that M is a homeomorph of an open disk or a homeomorph of
an open disk with one hole admits a (possibly infinite) tiling with squares that touch the boundary
of M. On the other hand there exists an open set M C R? such that M is a homeomorph of an
open disk with two holes which can not be tiled with squares that touch the boundary of M.

We will restrict ourselves to simple polyominoes, which are homeomorphs of a closed disk, and
we use the definition of a BTT given above. With the same arguments as used in [4] one can show,
that every simple polyomino admits a BTT. Now by defintion a BTT is finite and we can ask for
BTT-s with a minimum number of tiles for a given simple polyomino.

Definition 1.5 Let P be a simple polyomino. u(P) = min({|%|: ¥ is a BTT of P})

143

In the literature one finds results concerning the tiling of cell rectangles with a finite number
of squares under various conditions. So for example: the number of squares has to be as small as
possible [2], the squares of the tiling have to be pairwise incongruent [1]. The latter tilings are
called perfect.

2 Some properties of boundary touching tilings

First we note, that for a given polyomino there need not be a unique BTT. Consider for example
the rectangle with side lengths 2 and 8 displayed in figure 1. The integers inside the squares denote
their side lengths.

Figure 1: Different BTT-s for a given polyomino.

Definition 2.1 Let P be a simple polyomino. A straight line segment C' with endpoints and
y is called a cut through P if and only if C N bd(P) = {z,y} and C dissects P into two simple
polyominoes P, and P», thatis PP UP, =P and PPN P, =C.

Lemma 2.1 Let P be a simple polyomino and ¥ a BTT of P with |T| > 1. Then there exists a
cut C through P such that C' C Ugezbd(S).

This lemma can be proved by contradiction. We suppose there is no such cut C'. Then we
can construct a simple closed curve H such that H C int(P) and H C Ugegbd(S). But this
contradicts the fact that every S € ¥ touches the boundary of P.

Corollary 2.1 Let R be a cell rectangle and ¥ a BTT of R with |T] > 1. Then there exist at
least two distinct squares S, 52 € ¥ such that the side length of S; equals the side length of S
and is minimal among the side lengths of the squares in ¥.

Corollary 2.2 For a cell rectangle a BTT with more than one tile can never be a perfect tiling.

In the next section we want to use the cut property of a BTT to give an algorithm, which for
some subclass of polyominoes admits a rather efficient computation of BTT-s with the mimimum
number of tiles. Such BTT-s we will call minimum BTT-s for short.

3 Boundary touching tilings with the minimum number of
tiles

Our idea for an algorithm to compute a minimum BTT for a given simple polyomino P is rather
straight forward. We try every possible cut through P. From a cut C' we get the two subpoly-
ominoes Py (C) and P»(C'). We compute a minimum BTT %, (C) for P;(C) and a minimum BTT
To(C) for Py(C). Then T(C) = %1 (C) U ZT2(C) is a BTT for P. To obtain a minimum BTT for
P we only have to search for a cut C through P such that |T(C)| is minimum.

However if the minimum BTT-s for the subpolyominoes are computed by a recursive call to
the same algorithm we will end up with a very slow algorithm. Unfortunately in general we were
not able to overcome this difficulty. Only for a very restricted subclass of simple polyominoes we
could do better.

144

Definition 3.1 A polyomino P is called orthogonally convex if and only if for every horizontal
or vertical straight line S the set SN P is empty or a straight line segment.

Now when we have an orthogonally convex polyomino P consisting of n cells, the number of
possible subpolyominoes resulting from cuts is bounded by a polynomial in n. Therefore we can
apply the dynamic programming technique and obtain an algorithm the running time of which is
bounded by a polynomial in n too.

4 Rectangles

In this section we present some results concerning cell rectangles, because on the one hand, as has
been already mentioned in the introduction, there has been done quiet a lot of research on tiling
rectangles by squares. On the other hand we think these results are interesting in themselves and
leave to us some open questions.

First cell rectangles are special orthogonally convex polyominoes. So we can apply the algo-
rithm given above to compute minimum BTT-s. But we can tune the algorithm so that we end
up with a running time in O(n?) where n is the number of cells the rectangle consists of.

Definition 4.1 Let a and b be positive integers such that a < b. We set p(a,b) = p(R) where R
is a cell rectangle with side lengths a and b.

The function p(-,-) shows some kind of periodicity:

Lemma 4.1 Let a and b be positive integers such that a| §|4+2a < b. Then u(a,b) = p(a,b—a)+1.
Remark 4.1 The equation in the above lemma does not hold in general. For example we have
1(17,19) = 11 but u(17,36) = 10.

Another interesting problem is to give bounds for the function u(-,-). So far we were only
successful in giving a lower bound. We employ a technique which has been already used in [1] and
[2]. We are given a rectangle R with side lengths a and b such that @ < b and a and b are relatively
prime. For any BTT ¥ of R with |T| = m we construct a graph G(¥) with m edges. It is known
that the number of spanning trees of G(¥) is bounded from below by b. On the other hand we
were able to show that the number of spanning trees of G(¥) is at most the mth Fibonacci number
F,,,. Hence we have b < F},, or with other words a logarithmic lower bound on m in terms of b.

5 Concluding remarks

There remain some unsettled questions: Does an efficient algorithm exist, which given a simple
polyomino P computes a minimum BTT for P? What about an upper bound on the function
u(+,+)? The work done in [2] might indicate, that there are connections to number theory. Finally
we remark that the condition that every square in the tiling has to touch the boundary is really a
restriction with respect to the number of squares in a minimum tiling. Consider for example the
cell rectangle R with side lengths 11 and 13. A minimum BTT of R contains 8 squares, but we
can tile R with 6 cell squares. Can we say something about how many more squares we need due
to the condition of boundary touching?

References

[1] R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte. The dissection of rectangles into
squares. Duke Mathematical Journal, 7:312-340, 1940.

[2] Richard Kenyon. Tiling a rectangle with the fewest squares. Journal Combinatorial Theory -
Series A, 76:272-291, 1996.

145

[3] David A. Klarner. Polyominoes. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 225-240. CRC Press, 1997.

[4] W. T. Trotter, Jr. Tiling bounded open sets with squares that touch the boundary. In Annals
of the New York Academy of Science, volume 440, pages 304-321. 1985.

146

Best Fitting Rectangles

Manuel Abellanas* Ferran Hurtado! Christian Icking? Lihong Mat
Belén Palop® Pedro A. Ramos!

Extended Abstract, January 2003

1 Introduction

We solve an interesting optimization problem motivated by facility location and tolerancing metrol-
ogy, see [5, 6, 9]: What rectangle fits best a given set of points? This problem also arises in dealing
with paper position sensing [3]. Although our problem has some similarities to the problem of the
largest empty rectangle for which no O(nlogn) time solution is known, see [4, 8], for our problem
there is a simple algorithm which runs within that time if the aspect ratio of the rectangle is given
and even in time O(n) if not. Other problems of this kind include the fitting of points by a circle,
see [7], and offset polygon problems, see [1, 2].

2 Notations

We are given a set P of n point sites in the plane. Our task is to determine the rectangle which
is, in some sense, closest to all of them.

As usual, the distance between a point and an extended object means the distance between
the point and the closest point on the object, so the distance between a point p and a rectangle
Ris

d(p,) = min d(p, q) .

Here, d(p,q) denotes the distance in the underlying metric. Note that by rectangle we mean the
boundary of the rectangle, not the interior. So a point in the interior of a rectangle has a non-zero
distance to the rectangle.
For a certain subset, R, of admitted rectangles, we are looking for the best fitting one, i.e., a
rectangle such that
max d(p, R)

is minimized over all rectangles R of that kind. In other words, the best fitting rectangle R,
fulfills

max d(p, R = min max d(p,R) .

peb (p opt) RER peP (p)
Different kinds of admitted rectangles, R, and different metrics generate different problems to be
solved.

An environment of a rectangle is called a frame. More precisely, the set of points whose

distance to a rectangle R is less or equal to ¢ is called the e-frame of R, for short Fj;. The two

*Dept. de Matemadtica Aplicada, Universidad Politécnica de Madrid, Spain

tDept. de Matematica Aplicada II, Universitat Politécnica de Catalunya, Barcelona, Spain
tPraktische Informatik VI, FernUniversitit Hagen, Germany

§Dept. de Informatica, Universidad de Valladolid, Spain

TDept. de Matemaéticas, Universidad de Alcald, Spain

147

closed boundaries of Fy; are called the outer and inner e-offsets of R. The e-frame of R is also the
Minkowski sum of R and the unit circle of the underlying metric scaled by €.

In this paper we concentrate on axis-parallel rectangles with or without prescribed aspect
ratio, and we will use the L,-distance as underlying metric, which has axis-parallel squares as
unit circles. Therefore, the outer and inner offsets of a rectangle are also rectangles, see Figure 1.

A
Ot ”””” A
A |
<—>€ _[w 7 Oh
Iy |] & Ihv
RE 1y

Op ... v

O I I. O,

Figure 1: The e-frame of R and its edges.

The best fitting rectangle problem is equivalent to looking for the narrowest covering e-frame,
i.e., the frame with the smallest ¢ that covers all sites.

3 Arbitrary aspect ratio

If we do not prescribe a certain aspect ratio of the rectangle then to find the best fitting rectangle
is an easy problem.

Lemma 1 Let R be a rectangle whose e-frame covers P and B the bounding box of P. Then we
have for all p € P

d(p,B) < 2e.

Proof. Let p € P and let r be the point of R closest to p (one of them if there are several); we
know d(p,r) < e.

The (horizontal or vertical) line through p and r intersects B in two points. It is clear that at
least one of the two is not farer than € away from r because otherwise one of the sites on B would
not be covered by the e-frame of R, thus d(r, B) < e.

We can combine the two inequalities and use the triangle inequality to obtain

d(p, B) < d(p,r) +d(r, B) < 2z,
which is our claim. O

Now an optimal solution can be obtained as follows.

e Compute B, the bounding box of P, this will turn out to be the outside of an optimal
e-frame.

e Compute max d(p, B); call this 2e.
pEP

e Let R be the inner e-offset of B; this is a best fitting rectangle.

To prove the correctness of the algorithm, which clearly runs in time O(n), it suffices to say
that Fy covers all sites and that there is no covering frame of a smaller width, by Lemma 1.
Remark that in most cases the best fitting rectangle with arbitrary aspect ratio is not unique.

148

4 Given aspect ratio

height

Now the aspect ratio, a = , of the considered rectangles is also given. The problem is more

wi
complicated because the bounding box is no longer such a direct key to the solution. Nevertheless,
we have the following property.

Lemma 2 The inner and outer e-offsets of any best fitting rectangle with given aspect ratio, a,
contain a point of P. There is always an optimal solution which contains points of P on at least
four of its eight offset edges.

For the position of the points on the four offset edges, a lot of cases seem to be possible, at
first sight. By the next lemma, we reduce the number of cases to three.

As a short and precise notation, we introduce the following abbreviations. For the Y-coordinates
of the horizontal offset edges of a certain frame we say O, Oy, Iy, and I to the outer and inner
top and bottom edges, and for the X-coordinates of the vertical offset edges we say Oy, O,, I,
and I, to the outer and inner left and right edges, see Figure 1.

Lemma 3 There is always a best fitting rectangle with given aspect ratio, a, possibly after a
rotation of P by £90° or 180°, that corresponds to one of three main cases, see Figure 2:

Case 1 Oy, Oy, and I; are determined by points of P.
Case 2 Oy, Oy, I;, and I, are determined by points of P.

Case 3 Oy, I, and I, are determined by points of P.

Figure 2: The three main cases for best fitting rectangles.

Our main result says that there is a simple algorithm to solve these cases.

Theorem 4 A best fitting rectangle with given aspect ratio, a, for n points can be computed in
time O(nlogn).

Proof. Corresponding to the three cases of Lemma 3 and four main orientations (rotations), our
algorithm will find a best fitting rectangle in three main steps, each of which must be executed
four times. All steps are independent from each other. For the simplicity or the description we
assume that no two points of P have identical X- or Y-coordinates. Nevertheless the treatment
of the general case is not difficult at all.

Due to the lack of space we sketch only the algorithm for Case 1. We perform a sweep from
the middle of the interval (O, O;) simultaneously to the top and to the bottom.

Ot = Ymax> Op = Ymin, On = O — Oy, they correspond to the bounding box.
For all points p = (z,y) of P compute (p) = 3 min(O; — y,y — Oy).
Sort the points by decreasing e-value and renumber the points, py, p2, ..., in that order.

149

Let ¢; = e(p;) and egtart = Oiob min(1, a%)

Let T be an empty balanced tree to contain points according to their X-coordinates.
Insert all points p; with €; > €5pqr¢ into T'.
For all remaining points p; = (x;,y;) in this order do
Let I, = 2+ — 2¢;(1 + 1) be the width of the inner offset.
Search the two subsequent x;,z, € T with z; < x; < .
Let hy = min(zmin, z; — 26i, 2, — 26, — Iy)
and h, = max(z; — 2¢,z; — 2¢; — Ly, Tiax — 4€; — Ly).
If h; < h, then we have found a narrower covering frame with
Or=h, I =h+2¢;, I, =1, + I,,, O = I, + 2¢;,
I; = Oy — 2¢;, and I, = Oy + 2¢;.
Insert z; into T'.

The algorithm chooses the initial value €444+ such that the inner offset is just a line segment, and
all points lie between Op = ymin and Oy = yYmax- Then € is decreased and more and more points
do no longer lie between O, and Oy + 2¢ or O; — 2e and O,. These points are stored in T, and we
have to find a position of the vertical edges that corresponds to Case 1, i.e., they lie between O,
and I; = Oy +2¢ or I, = O, — 2¢ and O, while the current point p; must lie between I; and I,;
the test if h; < h, takes care of exactly this.

The running time of this algorithm (also for the other cases) is in O(nlogn) since for each
point we perform just one insert and one query operation. O

References

[1] G. Barequet, A. J. Briggs, M. T. Dickerson, and M. T. Goodrich. Offset-polygon annulus
placement problems. Comput. Geom. Theory Appl., 11:125-141, 1998.

[2] G.Barequet, M. T. Dickerson, and M. T. Goodrich. Voronoi diagrams for convex polygon-offset
distance functions. Discrete Comput. Geom., 25(2):271-291, 2001.

[3] M. Bern and D. Goldberg. Paper position sensing. In Proc. 18th Annu. ACM Sympos. Comput.
Geom., pages 74-81, 2002.

[4] B. Chazelle, R. L. Drysdale, ITI, and D. T. Lee. Computing the largest empty rectangle. STAM
J. Comput., 15:300-315, 1986.

[5] J. M. Diaz-Bafiez, J. A. Mesa, and A. Schébel. Continuous location of dimensional structures.
Report in Wirtschaftsmathematik 79, Department of Mathematics, Universitit Kaiserslautern,
Germany, 2002.

[6] Z.Drezner and H. W. Hamacher, editors. Facility Location: Applications and Theory. Springer-
Verlag, Berlin, Germany, 2002.

[7] J. Garcia-Lépez, P. Ramos, and J. Snoeyink. Fitting a set of points by a circle. Discrete
Comput. Geom., 20:389-402, 1998.

[8] M. Orlowski. A new algorithm for the largest empty rectangle problem. Algorithmica, 5:65-73,
1990.

[9] R. K. Walker and V. Srinivasan. Creation and evolution of the ASME Y14.5.1M standard.
Manufacturing Review, 7(4):16-23, 1994.

150

Algorithms for Placing and Connecting Facilities and their
Comparative Analysis

Klara Kedem, Irina Rabaev and Neta Sokolovsky
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

1 Introduction

Base stations are fixed stations used to send, receive and transmit signals. Each base station
consists of a tower, communication equipment and antenna(s). An antenna transmits and receives
radio waves. A base station serves users in a specific region defined by the area spanned by the
antenna(s). Usually these regions are circular, but other considerations can be taken into account,
such as topographic data, propagation model, number of covered customers, etc. If two base
stations are not in the range of each other due to transmission constrains, we may use a relay
stations to connect them. A relay station is a station with equipment to receive a signal and
retransmit it. It is mounted on a tower or on an existing base station.

In this paper we discuss algorithms for placing base stations (also referred to as facilities or
servers) and their interconnection: “Given a set of customers and a set of potential locations for
base stations, pick the minimum number of base stations that serve all the customers and then
connect the chosen base stations.” This problem is referred to in the literature as the Connected
Facility Location Problem [1, 2, 4]. We divide the problem into two sub problems and solve
each one separately. The first sub problem is to choose a set of base stations that serves all the
customers. We present the Integer Programming method that yields the optimal solution for
this problem and then review three approximation solutions (Section 2). The second sub problem
deals with adding connectivity between the chosen facilities. Here we present two heuristics: one is
based on Dynamic Programming and the other is based on Integer Programming (Section 3). We
have implemented all the algorithms discussed in the paper, the description of our implementation
and the experimental results are given in Section 4.

2 Finding the set of facilities that serve all the customers
In this section we discuss the algorithms for finding the smallest set of base stations that serves
all the customers. Given n locations where base stations can be placed, and given m customers,
the goal is to build the minimal number of base stations, such that their union serves all the
customers. ;From the geometric point of view: there is a set of customers represented by points
P ={p1,p2,...,pm} and a set of regions R = {ry,ra,...,7,}. Pick the smallest number of regions
such that their union covers all the customers. We discuss four algorithms that solve the stated
problem.

2.1 The optimal solution

We use Integer Programming to find the optimal set of facilities that serves all the customers.
The variables x;, ¢ = 1,...,n, in our problem represent binary decisions whether to build a base
station at a given location or not, where a positive decision is represented by 1, and a negative
decision is represented by O.

Let us formulate the constraints of the problem. Denote by T; the set of base stations that can
serve customer p;, 1 = 1 ... m, (the customer p; is in their range). At least one base station should
serve customer p;, therefore at least one variable from T; is assigned the value 1. Thus, we have
the constrains -, cq @; > 1, Vi € {1,...,m} . The cost of the solution is the total cost of the

selected servers, so the goal is to minimize Zl ¢;x;, where ¢; is the cost of building base station z;.

2.2 The greedy algorithm
Our first sub problem is actually the Set Cover problem. One method to approximate the Set
Cover problem is the greedy algorithm. It is quite straightforward: at each step choose the region

151

with the maximum number of remaining customers in it. Erase these customers from P and
proceed iteratively. The algorithm continues until all customers have been covered. Performance
ratio of the greedy algorithm is O(lnm) [3, 5].

We implemented this greedy algorithm, but improved its output in order to get rid of redundant
base stations. In order to find the redundant servers, we divide the solution set into connected
components (two servers a and b are connected if and only if there exist servers a = x1, %2, ...,z =
b, k > 2, such that for 1 <7 < k — 1 the regions spanned by z; and x;4; intersect). For each base
station x; in the connected component C' we check if for each customer p in its range, there exists
another base station z; in C' that covers p. If it is so, the server z; is redundant and we discard it.

2.3 A randomized algorithm

In this section we discuss a randomized algorithm for finding the cover set. The algorithm uses
an assumption that the number of intersections between regions spanned by the base stations is
bounded by a constant ! (e.g. each region intersects at most [other regions). The algorithm works
as follows. At each step randomly pick a customer p; € P and add all the servers that cover it
to the set S of picked base stations. Update P by deleting from it all the customers currently
covered by S and repeat until all customers are covered. We discard redundant base stations as
in section 2.2.

To estimate the performance of this algorithm let us define OPT be the optimal set cover for
the problem. At each step 4 the algorithm adds n; base stations to the solution, where n; < (the
assumption). Since p; must be covered, one of this n; base stations must appear in OPT. The
algorithm stops when all the base stations from OPT have been added to S. So, for each base
station from OPT the algorithm might pick at most I — 1 other base stations, hence |S| < I|OPT)
and the approximation ratio of the algorithm is O(1).

2.4 Adding the greedy approach into Randomized algorithm

The algorithm we discuss in this section is a variation of the random algorithm in section 2.3.
Instead of randomly picking the next customer from P we pick a customer covered by the least
number of servers. For each customer p; we assign a number n; - the number of facilities that can
serve customer p;. At each step the algorithm picks a customer p; with minimal n; and adds to
the solution all the base stations that cover it. We discard redundant servers as in section 2.2.

3 Connecting the base stations
We now want to connect the picked base stations. In a connected system each base station can
transmit to any other (either directly or through auxiliary base stations). If it is impossible to
connect two servers a and b due to the transmission radius or propagation constrains, we have to
add relay stations to connect a and b. We build the connected system in three stages:
(1) We first find the base stations that can be connected by only adding relay stations to them.
(2) Next we divide the servers into clusters: a and b are in one cluster if there exist servers
a=x1,%2,....,x; = b, k> 2, such that for 1 <¢ < k—1x; and x;41 are in the range of each other.
(3) In the final step we connect clusters by building new servers and adding relay stations.
Stages 1 and 2 can be done simultaneously by an MST algorithm. In stage 3 we use a greedy
strategy: at each step connect the nearest pair of clusters by adding a small number of new servers.
Next, replace these clusters by their union and the additional new base stations. Repeat until
only one cluster is left.
To connect a pair of clusters we use two different approaches: Dynamic Programming and
Integer Programming. We describe them below.

3.1 Dynamic Programming
The input to the Dynamic Programming algorithm consists of two clusters of base stations A and
B and the set of the possible base station locations, D.

We build a full graph G = (V, E), where V = AUBUD. We define a weight function w : E — R
that maps edges to real-valued weight w(u,v), where w(u,v) = cost of connecting u and v. If u
and v belong to the same cluster, then w(u,v) = 0 , if it is impossible to connect v and v, then
w(u,v) = oo, if one or both of the nodes are in D then w(u,v) = cost of building new server(s)
+ cost of connecting u and v by relay stations. The problem of connecting two clusters of base

152

stations is now posed as finding the least-weight path from u to v in G, where u € A, v € B and
the weight of a path is the sum of the weights of its edges. We use Dynamic Programming to find
all the shortest paths between pairs of vertices in G and then find the shortest among the paths
from a node in A and a node in B.

3.2 Integer Programming
We define two types of binary variables x; and y; j: x; represents the decision whether to create
a new base station 4, and y; ; whether to add a relay station on a server ¢ that transmits towards
server j. Each variable may get value 0 or 1, where 1 means that we choose to build the corre-
sponding base station or to add the corresponding relay station, and 0 means we don’t. In order
to build a path between clusters A and B we keep the following properties:
(1) For cluster A (B) we choose exactly one relay station (which will be placed on a new base
station) that has the ability to connect directly to the cluster A (B). We define T4 (resp. Tg) the
set of relay stations that can connect directly to one of the antennas in cluster A (B). Then the
constrains we have are: 32 cp yij = 1,30, cq, yij = 1.
(2) If we choose to add relay station y; ; on base station i, we have to add relay station y;; on
base station j, i.e. if y;; = 1 then y;; = 1. Hence, for each 7 and j, y;; — y;; = 0.
(3) On each new base station should be exactly two relay stations in order to continue the con-
nectivity. Let BT; be a set of relay stations that can be placed on base station x; (this set is either
empty or consists of exactly two relay stations), then for each z; ¢ AUB 2x; — ZyijEBTi yi; = 0.
It is clear that if these properties hold, then we get a valid connection between the two clusters.
The cost of the solution is the total cost of new servers and relay stations. Our goal is to find the
cheapest solution, so the objective function is to minimize Zw vi,€BT, (@ici + yijcij), where ¢; is
the cost of building a base station x; and c¢;; is the cost of adding a relay station y;;. If z; € AUB
then ¢; = 0.

4 Implementation and the experimental results
We have implemented the two algorithms based on Integer programming (sections 2.1 and 3.2) in
C++, and the approximation algorithms for finding cover set (sections 2.2 — 2.4) and the Dynamic
Programming algorithm (section 3.1) in Java . The algorithms were tested on Linux operating
system on Pentium-IIT machine with 512 MB memory. While implementing the algorithms, we
tried to use efficient data structures, but our code was not fully optimized.

The algorithms for the first sub problem were tested and compared on the following inputs:
(1) the number of customers varied between 100 to 5000,
(2) the customers were randomly picked in clusters (standing for villages) within a large square
with side size 15000 units,
(3) the number of possible base station locations varied between 50 to 3500,
(4) the transmission radius of the base station was R = 250 units,
(5) potential locations for base stations were chosen in the following way:
- at grid points G with distance 2R between two points
- at grid points of G shifted by a vector (v2R, v2R)
- additional 70% of random points.
Table 1 shows that the outputs of the approximation algorithms were very close to optimal. We
ran these algorithms on about 50 examples and got encouraging results: all of the approximation
algorithms found near-optimal solution.

Cover size
customers # bs | Randomized Greedy Alg.3 1P
1 5000 3060 215 215 213 210
2 5000 3056 233 235 235 229
3 5000 3162 239 241 237 231
4 3000 3267 206 208 204 201
5 3000 3162 207 211 205 203

Table 1. Finding the set of facilities that serve all the customers

153

Dynamic Programming Linear Programming

Figure 1. Connecting the base stations

The example illustrated in Fig.1 compares the performances of the Dynamic Programming and
Integer Programming algorithms for the 2"¢ sub problem. The input for the two programs con-
sisted of 29 existing base stations and 235 possible locations for new base stations. The programs
gave different connections with the same cost, but the run-time of the Dynamic Programming
algorithm was 38308 msec, while the run-time of Integer Programming algorithm was 53581 msec.
We used 5 kinds of relay stations with transmission radius 300, 350, 400, 450 and 500 units. In
Fig.1 the red points represent the set of customers, green points represent the set of potential
locations for base stations, black circles represent the regions spanned by the base stations that
were picked in order to serve all the customers, blue points represent the base stations we use for
connection and blue lines show the transmission. We run the programs on many example and
in all of them, the costs of connecting the base stations produced by Integer Programming and
Dynamic Programming algorithms were the same. Some of the results are summarized in Table 2.

Time in msec
existing bs # potential places for bs | cost of connecting DP P
1 15 39 15084 2 15
2 9 74 30162 10 22
3 19 66 19110 9 38
4 17 51 17078 6 17
5 21 99 25730 3699 10287

Table 2. Summary of experimental results

In our experimentations we found that approximation algorithms are good in the sense they
provide near-optimal solutions. For the problem of connecting the facilities into interconnected
system we have described two heuristics based on Dynamic and Integer Programming accordingly.
The solutions founded by these algorithms were different in connections, but had the same cost,
which is not surprising since both optimize. In addition, the run-time of the Dynamic Programming
algorithm was better in all our experiments.

References

[1] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. In European
Symposium on Algorithms, pages 179-193, 1996.

[2] S. Guha and S. Khuller. Connected facility location problems. In IMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, volume 40, pages 179-190, 1997.

[3] P. Slavik. A tight analysis of the greedy algorithm for set cover. In ACM Symposium on Theory of
Computing, pages 435—441, 1996.

[4] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location problems. In AP-
PROX, pages 256-270, 2002.

[5] U.Feige. A threshold of Inn for approximating set cover. In The Twenty-FEighth Annual ACM Sym-
posium on the Theory of Computing, pages 314-318, 1996.

154

Chips on Wafers, or Packing Rectangles into Grids

Mattias Andersson*

In the VLSI wafer industry it is nowadays
common that multiple projects share a single
fabrication matrix (the wafer); this permits fab-
rication costs to be shared among the partici-
pants. No a priori constraints are placed on ei-
ther the size of the chips nor on the aspect ratio
of their side lengths (except the maximum size
of the outer bounding box). After fabrication,
in order to free the separate chips for delivery
to each participant, they must be cut from the
wafer. A diamond saw slices the wafer into sin-
gle chips. However cuts can only be made all
the way across the bounding box, i.e., all chips
must be placed within a grid. A grid is a pat-
tern of horizontal and vertical lines (not neces-
sarily evenly spaced) forming rectangles in the
plane. There are some practical constraints, for
example, the distance between two parallel cuts
cannot be infinitely small, since machines with a
finite resolution must be programmed with each
cut pattern. Although some of these constraints
may simplify the problem we will not consider
them in this paper. This application leads us to
define grid packing as follows.

Definition 1 A set of rectangles S is said to
be grid packed if there exists a rectangular grid
such that every rectangle lies in the grid and
there is at most one rectangle of S in each cell,
as illustrated in Fig. 1. The area of a grid pack-
ing is the area of a minimal bounding box that
contains all the rectangles in the grid packing.

The general problem considered in this paper
is now stated.

MAGP [Minimum area grid packing] Given a
set S of rectangles find a minimum area grid
packing of S.

We also consider several interesting variants
of the problem, for example:

*Department of Computer Science, Lund Univer-
sity, Box 118, 221 00 Lund, Sweden. E-mail:
mattias@cs.lth.se, christos@cs.lth.se.

TTechnical University Eindhoven, Department of
Computing Science, P.O. Box 513, 5600 MB Eindhoven
E-mail: h.j.gudmundsson@tue.nl

Joachim Gudmundsson?

Christos Levcopoulos*

MAKGP [Minimum area k-grid packing]
Given a set of n rectangles and an integer
k < n compute a minimum area grid
packing containing at least k rectangles.

MAGPAR [Minimum area grid packing with
bounded aspect ratio] Given a set S of rect-
angles and a real number R, compute a
minimum area grid packing whose bound-
ing box aspect ratio is at most R.

MWP [Maximum wafer packing] Given a set
of rectangles S and a rectangular region A
compute a grid packing of &’ C S on A
such that |.S’| is maximized.

MNWP [Minimum number of wafers packing]
A plate is a pre-specified rectangular re-
gion. Given a set of rectangles S compute
a grid packing of S onto a minimal number
of plates.

MDGP [Minimum diameter grid packing]
Given a set S of rectangles find a minimum
diameter grid packing of S.

A problem that is similar to grid packing is
the tabular formatting problem [5]. In the most
basic tabular formatting problem one is given
a set of rectangular table entries and the aim
is to construct a table containing the entries
in a given order for each row and column. A
problem more similar to ours, with the excep-
tion that the rectangles cannot be rotated, was
considered by Beach [3] under the name ”Ran-
dom Pack”. Beach showed that Random Pack
is strongly NP-hard.

Our main result is a PTAS for the MAGP-
problem and some of its variants. Surprisingly,
if the value of ¢ is a large enough constant the
algorithms will run in linear time.

The approximation algorithms all build upon
the same ideas. The main idea is that for every
possible grid G there exists a grid G’ that can
be uniquely coded using only O(logn) bits such
that the area of G’ is at most a factor (1 + ¢)
larger than the area of G. Now, let F be the fam-
ily of these grids that can be uniquely coded us-
ing O(logn) bits. It trivially follows that there

155

Figure 1: Input is a set of rectangles S. Output
a grid packing of S

are only a polynomial number of grids in F.
Hence, every grid G’ in F can be generated and
tested. The test is performed by computing a
maximal packing of S into G’, which in turn is
done by transforming the problem into an in-
stance for the max-flow problem, i.e, given a
directed graph with a capacity function for each
edge, find the maximum flow through the graph.
To obtain a PTAS one uses O(log, . n) bits for
coding a grid in F. In a similar way only logn /2
bits are used to obtain a linear time approxima-
tion algorithm. More details about the family
of grids, called the family of (a, §8,7)-grids are
given in Section 2 together with two important
properties. Then, in Section 3 we show how
a grid is tested, and finally, in Section 4, we
present the main results.

We will assume that width, height and weight
of each rectangle r € S is between [1,n°], for
some constant ¢c. We argue in [2] that this as-
sumption can be made without loss of generality
with respect to our approximation results.

1 Approximation algorithm

The structure of the approximation algorithm
is given below. The two non-trivial steps,
lines 10 an 11, will be described in detail
in Sections 2 and 3 respectively. The last
step, PACKINTOGRID, is obtained by slightly
modifying the procedure TESTGRID. As input
to the algorithm we will be given a set S of n
rectangles and a real value &’ > 0.

Algorithm GRIDPACK(S,¢")

1. bestVal < oo,
Y e 1
a,B=V1+¢e,v= Vit —1
2. for each 1 <i,j <log, n° do
3. Sij +— 0
4. for each r € § do

5 it < [log, width(r)]

6. j < [log, height(r)]

7. Si,j — Si,j U {T}

8. end

9. for k <+ 1 to n/(*#7) do

10. G + GENERATEGRID(a, 3,7, k)

11. val < TESTGRID(G, S, o, 8,7)

12. if val < bestVal then

13. bestVal < val and bestGrid <+ G
14. end

15. Output PACKINTOGRID(S, bestGrid)

The initialisation is performed on lines 1 to
3. On lines 4-8, the rectangles are partitioned
into groups in such a way that a rectangle
r € S belongs to S;; if and only if the width
of 7 is between a'~! and «f, and the height
of 7 is between a/~! and of. Lines 1-8 ob-
viously run in linear time. Next, a sequence
of grids G are produced in a loop of lines 9-
14. They are the members of the so-called fam-
ily of («, 3,7)-grids which is described in Sec-
tion 2. (It consists of nf(®f7) grids, where
fla,8,7) = (2clog(aBy))/(logalog 5).) The
generated grid is tested and the weight of an
approximative grid packing of S into the grid G
is computed. If the grid packing is better than
the previously tested grids then G is saved as
the best grid tested so far. Finally, when all
grids in the family of («, 3,7)-grids have been
generated and tested a call to PACKINTOGRID
performs a grid packing of S into the best grid
found. This procedure is a simple modification
of the TESTGRID-step.

2 (a,f,7)-grids

The aim of this section is to define the family F
of (a, f,y)-grids and prove two properties about
F. Before the properties can be stated we need
the following definition. A grid Gy is said to
include a grid G4 if every possible set of rect-
angles that can be grid packed into G5 also can
be grid packed into G;. F has the following two
properties.

1. For every grid G there exists a grid G € F
that includes G and whose width and height

is at most a factor (aa _1) times larger
v

than the width and height of G, and
2. #F < nllab),
The definition of an («,,7)-grid is some-

what complicated, therefore we choose to de-
scribe this step by step.

156

A trivial observation is that two grid-packings
are equivalent if the one can be transformed
to the other by exchanging the order of rows
and/or the columns. Hence we may assume that
the columns are ordered with respect to decreas-
ing width from left to right and that the rows are
ordered with respect to decreasing height from
top to bottom. This ordering will be assumed
throughout the paper.

Counsider an arbitrary grid G and let a be a
real constant greater than 1. An a-restricted
grid is a grid where the width and height of each
cell in the grid is an integral power of « (multiple
of o' for some integer 7).

Let G be a a-restricted grid. If the num-
ber of columns/rows of each size is an inte-
gral power of 8 then G is a («,[3)-restricted
grid. The columns/rows in an a-restricted grid
of width/height o are said to have column/row
size i. A grid G is said to be y-monotone if the
number of columns (rows) of size ¢ is at most a
factor v > 1 times smaller than the number of
columns (rows) of size i + 1 for every i.

The following lemma is proven in [2], hence,
F is shown to have Property 1.

Lemma 2 For any grid G there exists a +-
monotone («, B)-restricted grid G (an (a, 8,7)-
grid for short) that includes G and whose width

aBy

and height is at most a factor (Mi1

than the width and height of G.

) greater

Most often we do not need the actual grid,
instead we are interested in the number of cells
in the grid of a certain size. That is, the grid G is
represented by a [1..log, n¢, 1..1og, n] integer
matrix, where G[i, j] stores the number of cells
in G of width o' and, height /. We call this a
matrix representation of a grid.

Now we turn our attention to the second prop-
erty for the family F of («, 3,7)-grids, i.e., the
number of grids that are members of F is at
most n/(®87) Assume that we are given a
member f € F and that f has ¢; columns of
size i, 1 < ¢ < log, n¢, and r; rows of size j,
1 < j < log,n®. Recall that r; and ¢; are
integral powers of #. The idea of the scheme
is as follows. The bit string, denoted S, is
built incrementally. Consider a generic step of
the algorithm. Assume that the bit string, de-
noted S;i1 has been built for all the row sizes
greater than j and that the number of rows

of size (j + 1) is B#Eows) Tnitially Slog,, ne
is the empty string and #Rows = 0. Con-
sider the row size j. We will have two cases,
either r; < (B#EOWs/y) or r; > (B#EOwS /).
In the first case, add ‘1’ to Sj;1 to obtain S;.
In the latter case, when r; > (B#H°ws /), add
(#Rows — (loggrj — logg 7)) zeros followed by
a ‘1’ to Sj41 to obtain S;. Decrease the value
of j and continue the process until ;7 = 0, and
hence, Sop = S.

The same approach is used to generate the
columns, hence we obtain the following obser-
vation that proves Property 2.

Observation 3 S has length 2(log,n°(1 +
logs) +logg n).

We obtain the following corollary:

Corollary 4 Given a bit string B of length
2(log,, n°(1 + logs) + loggn) one can in time
O(log® n) construct the unique matrix repre-
sentation of the corresponding («, 8,)-grid, or
decide that there is no corresponding («, 3,7)-
grid.

3 Testing a grid

In the previous section we showed a sim-
ple method to generate all possible (a,,7)-
restricted grids. For the approximation algo-
rithm, shown in Section 1, to be efficient we need
a way to pack a maximal number of rectangles
of § into the grid. As input we are given a ma-
trix representation of an (a,3,7)-grid G, and
a set S of n rectangles partitioned into groups
S;,; depending on their width and height. Let
Cp,q denote the number of cells in G that have
width o and height a?. We will give an ex-
act algorithm for the problem by reformulating
it as a max-flow problem. The problem could
also be solved by reformulating it as a matching
problem but in the next section we will show
that the max-flow formulation can be extended
to the weighted case. The max-flow problem is
as follows.

Given a directed graph G(V, E) with capacity
function u(e) for each edge e in E. Find the
maximum flow f through G.

The flow network Fsg corresponding to a
grid G and a set of rectangles S contains four
levels, numbered from top-to-bottom, and will
be constructed level-by-level.

Level 1. Contains the source node v,

157

Level 2. Contains log? n¢ nodes. A node)

g
at level 2 represents the group S; ;. For each
node v

0,7
1/57 j). The capacity of this edge is equal to the

number of rectangles in S that belongs to S ;.

Level 3. Also contains log? n¢ nodes. A node

Vi

For each node v,

node 1/() to node 1/,(,,3 if and only if p > i and
q>J (or g > i and p > j), i.e., if a rectangle
in S; ; can be packed into a cell in C, ;. All the
edges from level 2 to level 3 have capacity n.
Level 4. Contains the sink »*). For every

node 1/,(,3 on level 3 there is a directed edge

there is a directed edge from v to

on level 3 represents the set of cells in Cp 4.

()

there is a directed edge from

from %) to v with capacity equal to the
number of cells in G that belongs to Cp, 4.

The following results are straight-forward.

Observation 5 The maximal grid packing of S
into G has size k if and only if the max flow in
the flow network is k.

In 1998 Goldberg and Rao [4] presented an
algorithm for the maximum flow problem with
running time O(n*/3mlog(n®/m)logU). If we
apply their algorithm to the flow network we
obtain the following lemma followed by the first
grid packing theorem.

Lemma 6 Given a matrix representation of an
(a, B,7v)-grid G and a set S of n rectangles par-
titioned into the groups S; ; w.r.t. their width
and height. (1) The size of an optimal packing of
S in G can be computed in time O(log” n). (2)
An optimal packing can be computed in time
O(log” n + k), where k is the number of rectan-
gles in a grid packing of S in G.

Theorem 7 Given a set of rectangles S and
an € > 0, algorithm GRIDPACK produces a
grid packing whose area is most (1 + ¢) times
larger than a minimum area grid packing of &
in time O(nf V1+9) 10g'®/3 n 4 n), where f(x) =
2clog(x/(\f 1)))

log? x

Even though the expression for the running
time in the above theorem looks somewhat com-
plicated it is not hard to see that by choosing
the value of € appropriately we obtain that, al-
gorithm GRIDPACK is a PTAS for the MAGP-
problem, and if € is set to be a large con-
stant GRIDPACK produces a grid packing that is

within a constant factor of the optimal in linear
time. Note also that the approximation algo-
rithm easily can be generalised to d dimensions.

4 Results

The approximation algorithm presented above
can be extended and generalised to variants
of the basic grid packing problem by perform-
ing some small modifications to the procedure
TESTGRID. We obtain the following corollary.

Corollary 8 Algorithm GRIDPACK is a 7-
approximation al/gontbm with time complexity
O(nf V1+9) 10g/3 1 4 n), where:
- 7 = (1+¢) for the problems MAKGP, MAG-
PAR and MDGP,
- 7 = (1 —¢) for the MWP-problem, and
- 7=((|2(1+¢)])?) for the MNWP-problem

Finally we consider the hardness of three vari-
ants of the MAGP-problem.

Theorem 9 (1) MNWP cannot be approxi-
mated within a factor of 3/2 — ¢ for any € > 0,
unless P = NP. (2) The MAGPAR-problem
and the MWP-problem are NP-hard.

5 Acknowledgements

We thank Esther and Glenn Jennings for intro-
ducing us to the problem. We would also like
to thank Bernd Géartner for pointing us to “The
table layout problem” [1, 3, 5, 6].

References

[1] R.J. Anderson and S. Sobti. The Table Layout
Problem. Proc. of SoCG, 1999.

[2] M. Andersson, J. Gudmundsson and C. Lev-
copoulos. Tech rep., Dept. of Comp. Sci., Lund
University, 2002.

[3] R.J. Beach. Setting tables and illustrations
with style. PhD thesis, Dept. of computer sci-
ence, University of Waterloo, Canada, 1985.

[4] A. V. Goldberg and S. Rao. Beyond the flow
decomposition barrier. Journal of the ACM,
45(5):783-797, 1998.

[6] K. Shin, K. Kobayashi and A. Suzuki. TAFEL
MUSIK, formatting algorithm of tables. Proc.
of Principles of Document Processing, 1994.

[6] X. Wang and D. Wood. Tabular formatting
problems. Proc. of Principles of Document Pro-
cessing, 1996.

158

Unit Height k-Position Map Labeling

F. Rostamabadi* M. Ghodsif

Computer Engineering Department
Sharif University of Technology
Tehran, Iran

Abstract

We explore a new variation of k-Position Map Labeling problem, first introduced by Doddi et.
al. [DMMO0] which is: Given a set of points in the plain, a set of up to k allowable positions for
each point and, a set of feasible labels (or labeling models) for each position, choose the maximum
number of non-intersecting labels so that no point receive more than one label. We define and solve
this problem with unit height rectangular labels, in 1D and 2D cases, and also in fixed and slider
models.

We present two simple-to-implement 3-approximation algorithms for this problem in both fixed
and slider models in 2D case and for unbounded k. We also show that even the problem in 1D is
NP-Complete. We then present two 2-approximation algorithms for solving the problem in 1D case.

1 Introduction

Automated label placement is an important problem for map generation in geographical information
systems (GIS). The problem is to attach one or more labels (regularly a text) to a point, a line, a
curve, or a region in a given map. The point feature label placement has received good attention within
computational geometers. Two basic requirements of such labeling are [MS91]: (1) The selected labels
should be pair wise disjoint, and (2) Each label should be close enough to the corresponding feature
to be identified as such. Other variations of this problem let the features receive more than one labels
[KT98, ZQO1], or use specific shapes as labels [DMMT97, vKSW99, SW01]. There are also two labeling
models, fixed and slider model. The former is when fixed positions are given as possible label positions
[MS91] and the latter is for the cases where the labels can be placed at any position while touching the
feature [SvK00, KMO0O].

Many different approaches have been proposed to solve this problem, including zero-one integer pro-
gramming [Zor86], approximation algorithms [FW91, DMM ™97, ZP00], expert systems [DF89], simulated
annealing [ZP00] and force driven algorithms [Hir82].

Doddi et. al. [DMMO0] introduced the problem of label size maximization k-Position Map Labeling
(KPML). In this problem, a set of points in the plain is given and, for each point, we have a set of up to
k allowable positions. The problem is to place uniform and non-intersecting labels of maximum size at
each point in one of the allowable positions. They have focused on circular labels and have proposed a
3.6-approximation algorithm for it.

Our problem definition is different from that in [DMMO00]; we are concerned with selecting the maxi-
mum number of labels from a set of feasible labels given for each position. We use nKPML to denote this

*frostam@linux.sharif.edu
Tghods i@sharif.edu

159

four label candidates
for eac]il candigate pOSeltiOIl

Candidate Positions
to recieve a label

Figure 1: A simple usage of nKPML in line labeling

new problem. More precisely, nKPML is defined as follows: Given a set of points in the plain and a set
of up to k allowable positions for each point, and a set of feasible label placements (or a labeling model)
for each position, choose the maximum number of non-intersecting labels such that no point receive more
than one label.

We focus on nKPML problem with unit height rectangular labels and consider both fixed and slider
models. In the fixed model, at each position a finite set of feasible label placements is allowed (see Figure
1).

We will show that this problem is NP-Complete even in 1D case. We propose two different 2-
approximation algorithms for both fixed and slider model in 1D case. We then will generalize this
solution to obtain 3-approximation algorithms for both models in 2D case.

2 Problem Definition of 2D-nKMPL in Fixed Model

Let S = {S1,S2,...,Sn} be a set of points where each S; = {si,, iy, .- ., 8i,, } shows all possible positions
of point S;, and let L;; be all unit-height labels for object s;; of S;. It is also assumed that

Vi<i<n Mi<j<n; Li; # 0

(i.e., each pair of labels of a given site must have non-empty intersection.)
The problem is to find the maximum number of labels such that following conditions hold:

e At most one label is chosen from the set Ui<j<n; L; ; (for each 7).
e All chosen labels should be pair wise disjoint.

This problem is a generalization of the standard point label placement problem, since any instance
of label placement problem is in fact an instance of this problem by setting S; = {p;} for each i, where

160

P = {p1,pa,...,pn} is the set of point locations. Therefore, this problem is also NP-Complete [MS91]
and can not be approximated with a factor better than 2 in time Q(nlogn) [FW91, Wag94].

2.1 1D-nKPML in Fixed Model

We define 1D-nKPML in fixed model as follows. A set G = ¢1,92,...,9m of interval group g; =
Iiv, Liz, ..., Iip,; is given, where each I;; is an interval on z-axis. The problem is to choose at most
one interval from every interval group such that all chosen intervals are pair wise disjoint.

The general idea of defining the problem in 1D is to solve the problem in a very special case where
there exists a single horizontal line intersecting all possible label positions.

2.2 1D-nKPML Problem is NP-Complete

It can be shown that there is a polynomial time reduction from standard unit-length square labeling in
fixed model to 1D-nKPML problem. The standard unit-length labeling problem is:

Suppose that the point set P is given and we are asked to find the maximum number of
disjoint unit-length squares such that each point is adjacent to exactly one square in just one
of its vertices and each square is adjacent to exactly one point.

Given an instance of unit-length labeling problem, we define a set of horizontal lines H; : y = [, for
all [that there is a label position intersecting H;. Now, define intersection of label candidates of point p;
with Hj as intervals I;;; and I;;2, and grouping these two intervals into one group G;; of p;. Since each
point in standard unit-height labeling has four label candidates, it is obvious that exactly two horizontal
lines H; and Hji; (for some j) will intersect with all these four label candidates, and two groups Gi
and G2 will be generated per point. We merge the horizontal lines H; into a single horizontal line (e.x.
x-axis) with serializing the intervals from left to right i.e. Put intervals of H;, somewhere on z-axis, then
put intervals of H;, after them, and so on. Now, we have an instance of 1D-nKPML.

It is known that if we restrict the point coordinates to be integers, the problem still remains in NP-
Complete. Using this restriction, it is obvious that a solution to unit-length labeling problem can be
constructed from a solution of 1D-nKPML which is known to be NP-Complete and a 2-approximation
can be achieved in time Q(nlogn) [Wag93].

2.3 2-Approximation Algorithm of 1D-nKPML

A simple greedy algorithm can approximate the 1D-nKPML problem within factor two. The main idea
to solve the 2D case, is to repeatedly choose the interval with minimum right end point such that a
consistent solution is found.

Algorithm Sort all intervals according to their right end point in ascending order and save them in
a sorted list 1. As long as the sorted list [is not empty, pick the interval /;; with minimum right end
point. If the interval I;; has no intersection with previously selected intervals, and if no interval of the
group G; is not selected before, then select interval I;;, otherwise just remove interval I;; from I. a

It is obvious that the running time of the above algorithm is O(llogl) where [is total number of
intervals. The initial sorting of intervals need no more than O(llog!) and the while loop runs once per
interval. Each iteration of while loop requires O(1) to check if the interval I;; is free and another constant
time is required to check if the group G; is already labelled or not. So, the overall running time of the
algorithm is O(llog!).

Lemma 1 Given an instance of fized model 1D-nKPML, a solution of size at least A/2 can be computed,
where X\ is the mazimum number of intervals in an optimal solution.

161

Proof Let S*,S be an optimal solution and output of our algorithm accordingly. We show that for
every selected interval I;; € S at most two intervals from the optimal solution, S*, will be missed.

Let I;; € S be the interval with the minimum right end point, then the first missing label might
be I;j; € S* which can not be selected since the I;; is selected (Note that I;; is the optimum interval
selected for group G; in S*). The second missing label might be the label with minimum end point in
I, € S* (that may have an intersection with I;; and can not be selected anymore).

Now it is obvious that by selecting the interval I;; the algorithm will miss at most two intervals of a
given optimal solution. So, the overall approximation factor of this algorithm is two. |

2.4 3-Approximation Algorithm for Unit Height 2D-nKPML in Fixed Model

A simple greedy algorithm can approximate the 2D-nKPML problem within factor three. The main idea
is to repeatedly choose the left most label such that a consistent solution is found.

Algorithm Sort all labels according to their right edge in ascending order and save them in a sorted
list L. As long as the sorted list L is not empty, pick the first label L;; from the list. If the label L;; has
no intersection with previously selected labels, and if no label is assigned to feature S;, then select label
Lij. O

It is obvious that the running time of the above algorithm is O(/log!) where [is total number of label
candidates. The initial sorting of labels needs no more than O(llogl) and the while loop runs once per
label. Each iteration of while loop requires O(logl) to check if the Label L;; has an intersection with
previous selected labels and a constant time is required to check if the feature S; is already labelled or
not. So, the overall running time of the algorithm is O(llog!).

Lemma 2 Given an instance of fized model 2D-nKPML, a solution of size at least A/3 can be computed,
where X is the mazimum number of labels in an optimal solution.

Proof Let S*,S be an optimal solution and output of our algorithm accordingly. We show that for
every selected label L;; € S at most three labels from the optimal solution, S*, will be missed.

Let L;; € S be the label with leftmost right edge, then the first missing label might be L;;» € S* which
can not be selected since the L;; is selected (Note that L;; is the optimum label selected for feature S;
in Sx). The next two missing labels might be labels with minimum right edge in L, € S* (that may
have an intersection with I;; and can not be selected anymore). Also note that since all labels has unit
height, at most two such labels from the may exist that has an intersection with the first leftmost label.

Now it is obvious that by selecting the Label L;;, above algorithm will miss at most three labels from
a given optimal solution. So, the overall approximation factor of this algorithm is three. |

3 Problem Definition of 2D-nKMPL in Slider Model

Let S = {(S1,S2,...,Sn} be aset of points where each S; = {s;,, 8i,, .-, 8i,, } shows all possible positions
of point S;, and a slider labeling model (1S, 2S or 4S) is given. The parameter I;; specifying the length
label at s;; is also given. It is also assumed that all labels have unit height and

Vi<i<n Mi<j<n; Li; # 0

(i.e., each pair of labels of a given site must have non-empty intersection.)
The 2D-nKMPL problem is to find the maximum number of non-intersecting labels such no point
receives more than one label.

162

3.1 3-Approximation Algorithm of 2D-nKPML in Slider Model

A simple greedy algorithm can approximate the 2D-nKPML problem in slider model within factor three.

The general idea is the same as the one in slider model algorithm, but with some modifications.
Algorithm Use the slide labeling algorithm [vKSW99] and whenever a label is assigned to a feature,

remove other positions of the feature. a

Lemma 3 Given an instance of slider model 2D-nKPML, a solution of size at least A/3 can be computed,
where X\ is the mazimum number of intervals in an optimal solution.

Proof Since the algorithm of van Kreveld, Strijk and Wolff chooses the leftmost labels first, so the
proof will be the same as fixed model. O

4 Conclusion

We considered a new variation of KPML problem introduced in [DMMO00]. We show that the problem
with unit height rectangular labels is in NP-Complete even in one dimensional case. We then propose
two different, yet simple to implement, 2-approximation algorithms for solving the 1D-nKPML in fixed.
Generalizing the idea, we obtain two 3-approximation algorithms for 2D-nKPML in both models.

We do not yet know the lower bounds of approximation algorithms and it can be interesting problem
to work on.

References

[DF89] Jeffrey S. Doerschler and Herbert Freeman. An expert system for dense-map name placement.
In Proc. Auto-Carto 9, pages 215-224, 1989.

rinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M.E. Moret, and Binhai Zhu.

DMM™97] Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, B d M.E. M d Binhai Zh
Map labeling and its generalizations. In Proceedings of the 8th ACM-SIAM Symposium on
Discrete Algorithms (SODA’97), pages 148-157, New Orleans, LA, 4-7 January 1997.

[DMMOO] Srinivas Doddi, Madhav V. Marathe, and Bernard M.E. Moret. Point set labeling with
specified positions. In Proc. 16th Annu. ACM Sympos. Comput. Geom. (SoCG’00), pages
182-190, Hongkong, 12-14 June 2000.

[FW9I1] Michael Formann and Frank Wagner. A packing problem with applications to lettering of
maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom. (SoCG’91), pages 281-288, 1991.

[Hir82] Stephen A. Hirsch. An algorithm for automatic name placement around point data. The
American Cartographer, 9(1):5-17, 1982.

[KMOO0] Gunnar W. Klau and Petra Mutzel. Optimal labelling of point features in the slider model.
In D.-Z. Du, P. Eades, V. Estivill-Castro, X. Lin, and A. Sharma, editors, Proc. Sizth An-
nual International Computing and Combinatorics Conference (COCOON’00), volume 1858
of Lecture Notes in Computer Science, pages 340-350, Sydney, 26—28 July 2000. Springer-
Verlag.

[KT98] Konstantinos G. Kakoulis and Ioannis G. Tollis. On the multiple label placement problem.
In Proc. 10th Canadian Conf. Computational Geometry (CCCG’98), pages 66—67, 1998.

163

[MS91]

[SvK00]

[SWO01]

[VKSW99]

[Wag93]

[Wag94]

[Zor86)

[ZP00)]

[ZQO1]

Joe Marks and Stuart Shieber. The computational complexity of cartographic label place-
ment. Technical Report TR-05-91, Harvard CS, 1991.

Tycho Strijk and Marc van Kreveld. Practical extensions of point labeling in the slider
model. Technical Report UU-CS-2000-08, Department of Computer Science, Utrecht Uni-
versity, 2000.

Tycho Strijk and Alexander Wolff. Labeling points with circles. International Journal of
Computational Geometry and Applications, 11(2):181-195, April 2001.

Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels.
Computational Geometry: Theory and Applications, 13:21-47, 1999.

Frank Wagner. Approximate map labeling is in Q(nlogn). Technical Report B 93-18, Fach-
bereich Mathematik und Informatik, Freie Universitdt Berlin, December 1993.

Frank Wagner. Approximate map labeling is in Q(nlogn). Information Processing Letters,
52(3):161-165, 1994.

Steven Zoraster. Integer programming applied to the map label placement problem. Carto-
graphica, 23(3):16-27, 1986.

Binhai Zhu and Chung Keung Poon. Efficient approximation algorithms for two-label point
labeling. International Journal of Computational Geometry and Applications, 2000. To
appear.

Binhai Zhu and Zhongping Qin. New approximation algorithms for map labeling with sliding
labels. Journal of Combinatorial Optimization, 2001. To appear.

164

Good NEWS:
Partitioning a Simple Polygon by Compass Directions

*

Marc van Kreveld Iris Reinbacher
marc@cs.uu.nl iris@cs.uu.nl

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

1 Introduction

Nearly all Internet search engines use term matching to create a list of hits and rank the query results. Normally
this yields satisfying results. But when a user seeks for “ruins in Eastern Greece” or “castles near Paris”, standard
search engines are less appropriate. The problem is that concepts like “Eastern Greece” and “near Paris” use a spatial
relationship with respect to a geographical object, and the terms “Eastern” and “near” themselves are not relevant for
term matching. Such problems have lead to research on geographic information retrieval [7, 8]. Addressing spatial
searches on the Internet and building a spatially-aware search engine is the focus of the SPIRIT project [6]. By using
geometric footprints associated to Web pages, geographic ontologies, methods to determine spatial relationships, and
query expansion, spatial searches can most likely be performed much better.

Figure 1: Three partitions of Austria by compass directions.

In this paper we address the problem of dividing a country into four subregions by compass directions (NEWS:
North, East, West, South). This is one of the aspects of the SPIRIT project, namely to define and compute spatial rela-
tionships that are needed in spatial information retrieval. The partitioning is also useful in geographic user interfaces,
where the user can select a region of interest by clicking in the partitioning of the region. The regions of interest, like
“the South of Austria”, do not have a well-defined boundary, but are used in a more loose sense. This fuzziness of
geographic objects due to language issues is well-known [3, 11]. Spatial relationships between two geographic objects
that describe proximity or relative position are discussed in [1, 9].

In order to compute a good NEWS partition, we describe an algorithm to determine — for a simple polygon P
and a positive real A — all wedges with a given angle and orientation that contain exactly area A of P. We solve
the standard version of the wedge problem in optimal O(n?) time, and the version where the wedge is restricted to
its simply-connected part inside P in O(nlogn) time. However, the corresponding NEWS partitions are computed in
O(nlogn) time in both cases.

Related in computational geometry is research on area partitionings and continuous ham-sandwich cuts of poly-
gons [2, 5]. Shermer [10] shows how to partition a simple polygon by a vertical line in two equal-area halves in linear
time. Diaz and O’Rourke show in [4] how to partition a convex polygon into equal-size parts using an orthogonal
four-partition.

*This research is supported by the EU-IST Project No. IST-2001-35047 (SPIRIT).

165

2 Criteria for a good NEWS partition

There are many criteria one can use to partition a country into four regions by compass directions. Some criteria are
especially relevant for the application in query answering of geographic information retrieval whereas others apply
more to geographic user interfaces. We list the most important criteria next:

o the relative orientation of any two points should be conserved (no point in North should be farther to the South
than any point in South)

e regions should be non-overlapping but adjacent

e all regions should have the same proportion of the area

The first criterion is essential because is contains the essence of the compass directions. The other criteria seem
especially important for the user interface application. We would like to develop a simple, efficient algorithm which
works well for most countries. With the criteria in mind, certain algorithmic problems can be formulated to find a
NEWS partition of a country. They are stated in the following three suggestions. The partitionings for these sugges-
tions are shown in Figure 1.

Suggestion 1 Compute the center of gravity of the polygon and draw two lines with slope +1 and —1 through this
point.

Suggestion 2 Use horizontal and vertical lines to iteratively cut the polygon into four regions which each cover 25%
of the polygon’s area.

Suggestion 3 Divide the polygon into four equal-size regions such that the sum
6= disl‘y(CN,Cp) + disl‘y(CS,Cp) -}—distx(CE,Cp) +diStX(CW,CP)

is maximized. Here Cp denotes the center of gravity of polygon P, and Cy,Cg,Cw,Cs denote the centers of
gravity of the North, East, West, and South region. dist, and dist, denote the distance by x-coordinate and by
y-coordinate.

The center of gravity in Suggestion 1 can be computed in linear time. For Suggestion 2, we let the x- and y-extent
determine whether we first split by horizontal or vertical lines. We can apply the algorithm of Shermer [10] three
times, which gives a linear time solution.

In this paper, we will focus on finding a NEWS partitioning by an algorithm following the last suggestion. For
now we will consider only the more general setting of partitioning the polygon into not necessarily simply connected
NEWS regions. We will prove that a NEWS partitioning by Suggestion 3 can only lead to a partitioning with a shape
described in Lemma 1.

We will denote with X a construction made of a vertical line in the middle and two lines with slope +1 and —1 at
the top and at the bottom. Similarly, we denote with >< the rotated shape with a horizontal line as middle part. We
call the nodes where the three segments meet the focal points. In a >< partitioning, we have a West and an East focal
point. In a X partitioning, we have a North and a South focal point.

Lemma 1 If an arbitrary simple polygon P is divided into four (not necessarily connected) parts, such that each
part covers exactly 25% of the polygon’s area and the sum & = disty(Cy,Cp) + disty(Cs,Cp) + dist(Cg,Cp) +
dist,(Cw,Cp) is maximized, then it has inner boundaries shaped X or ><. Here Cp denotes the center of gravity
of P,and Cy,Cg,Cyw ,Cs denote the centers of gravity of the NEWS regions. Furthermore, the partitioning is unique.

3 NEWS partitions with arbitrary regions

In this section we give an algorithm to compute all wedges with fixed angle and orientation that contain a given area
A. We also show how to compute a NEWS partitioning of a simple polygon following Suggestion 3.

Definition 1 For a simple polygon P, we call a wedge of the form (y > x+a) N (y > —x+ b) that contains 25% of the
area of P a North-wedge of P. East-, South-, and West-wedges are defined similarly.

166

Definition 2 The North-trace is the locus of all points that are apex of a North-wedge. East-, South-, and West-traces
are defined similarly.

The outline of an algorithm to compute a NEWS partitioning according to Suggestion 3 is as follows:

1. Compute the East-trace Tg and the West-trace Ty of polygon P.
Scan Tg and Ty simultaneously from top to bottom, to determine if there is a pair of points p g € Tg and
pw € Ty with the same y-coordinate and p g to the right of py (or coinciding) and which gives a North area
of 25% of P.

3. If such a pair exists, return the >< partitioning.

4. Otherwise, compute the X partitioning similarly.

The algorithm can be implemented to run in O(nz) time, which will be shown next. For convenience, we rotate
the polygon by 45 degrees, so that a West-wedge is now a quadrant of the form (x < a) N (y < b).

Lemma 2 After rotation, the West-trace is an infinite, continuous, piecewise quadratic curve consisting of ©(n?)
pieces in the worst case, and any line with positive slope intersects it only once.

We now describe the sweep algorithm that computes the West-trace for the rotated polygon. Since the algorithm
is the same for any fixed area of P inside the wedge, we set A = Area(P)/4 and give an algorithm to compute all
West-wedge positions that have area A inside the intersection of P and the wedge.

We initialize by computing a vertical line that has area A left of it. Then we determine the highest point of P left of
or on this vertical line. The highest point is the first break point p of the trace. The initial part of the trace is a vertical
half-line down to pg. We initialize two lists L, and L, with all vertices of P sorted on increasing x- and decreasing
y-coordinate, starting at po. During the sweep we maintain: a balanced binary search tree 7 on the edges of P that
intersect the sweep line, the leaf in 7 that stores the edge of P vertically below the current position of the trace, and
the equation of the currently valid curve. The leaves of T are linked into a list. One of three event-types can occur:

1. The vertical line through the current position of the trace (the sweep line) reaches a vertex of P.
2. The horizontal line through the current position of the trace reaches a vertex of P.
3. The trace reaches the boundary of P.

The next event can be determined in O(1) time from the equation of the curve, the first element in each list, and the
edges of P above and below the current position. An event of type 1 requires an update of 7 and possibly the pointer
to the leaf with the edge below the trace. If the vertex of P is below the position of the trace, we output the next break
point and update the equation of the curve. For the second and third type of event similar actions are taken. Note that
the sweep also continues if the position of the trace goes outside P. Later it may enter P again. We conclude:

Theorem 1 Given a simple polygon P with n vertices and a value A, the set of all positions of apexes of wedges with
a fixed shape and orientation that contain a portion of area A of P inside can be computed in optimal O(n ?) time.

Completing the NEWS partitioning by step 2 takes O(nz) time, so we can compute a NEWS partitioning for
Suggestion 3 in O(n?) time. Actually the running time for computing a trace is O(nlogn +k), where k is the complexity
of the trace. In practice k will be much less than quadratic, so the algorithm is efficient on real world data.

We can improve this result to a worst case O(nlogn) time algorithm. We do not compute the whole traces.
Instead we determine by binary search and an adaptation of Shermer’s algorithm [10] the two vertices of P that have
consecutive (x — y)-values of their coordinates, and the >< partitioning has its focal points at some (x — y)-value in
between. Here we can compute the West- and East-trace explicitly by the sweep described above. Now we have at
most O(n) events of type 3.

Theorem 2 Given a simple polygon P with n vertices, we can determine a partitioning by >< or X where each region
contains exactly 25% of the area in O(nlogn) time. The partitioning maximizes the sum of distances of centers of
gravity & = dist,(Cy,Cp) + dist,(Cs,Cp) + dist,(Cg,Cp) + distc(Cw,Cp).

167

4 Extensions

The three suggestions for partitioning algorithms have been implemented (see Figure 1). The results for ten different
country outlines can be found in [12].

The idea of partitioning a simple polygon into four equal-size not necessarily simply-connected parts, while maxi-
mizing the sum-of-center-of-gravity distances immediately generalizes to polygons that are not simply connected. The
following extensions have been studied more thoroughly, see [12]:

Fair partitioning: Find a simply-connected partition into four regions by >< or X such that each region has 25% of
the area, or decide that no such partition exists.

Maxmin: Find a simply-connected partition by >< or X that maximizes the area of the smallest region.

Minmax: Find a simply-connected partition by >< or X that minimizes the area of the largest region.

The fair partitioning uses a modified version of the sweep algorithm. Because of the simply-connectedness of the
partition itself we can show the following:

Theorem 3 For a simple polygon P with n vertices, we can determine in O(nlogn) time if there exists a simply-
connected >< or X partitioning into four simply-connected regions that all have 25% of P’s area.

For the Maxmin and Minmax partitioning the following holds:

Theorem 4 For a simple polygon P with n vertices, we can compute a simply-connected >< and X partitioning that
minimizes the maximum area subregion or maximizes the minimum area subregion in O(n?) time.

Another extension is to define a center region of a country as well. By restating Suggestion 3 as partitioning a
polygon into five regions, each with 20% of the area and applying the same proof ideas, we can show that the center
is an axis-parallel rectangle and the other boundaries are lines with slope +1 or —1. It can also be useful to define a
degree of North, East, West and South. This could be done simply by coordinates or by growing the center region of
the polygon.

References

[1] A.I Abdelmoty and B.A. El-Geresy. An intersection-based formalism for representing orientation relations in a geographic
database. In 2nd ACM Workshop on Advances in GIS, pages 44-51, 1994.

[2] P.Bose, J. Czyzowicz, E. Kranakis, D. Krizanc, and A. Maheswari. A note on cutting circles and squares in equal area pieces.
In Proc. FUN with Algorithms 98, 1998.

[3] P.A. Burrough and A.U. Frank, editors. Geographic Objects with Indeterminate Boundaries, volume II of GISDATA. Taylor
& Francis, London, 1996.

[4] M. Diaz and J. O’Rourke. Ham-sandwich sectioning of polygons. pages 282-286, 1990.

[S] Susan Hert. Connected area partitioning. In Abstracts 17th European Workshop Comput. Geom., pages 35-38. Freie Univer-
sitidt Berlin, 2001.

[6] C.B.Jones, R. Purves, A. Ruas, M. Sanderson, M. Sester, M.J. van Kreveld, and R. Weibel. Spatial information retrieval and
geographical ontologies — an overview of the spirit project. In Proc. 25th Annu. Int. Conf. on Research and Development in
Information Retrieval (SIGIR 2002), pages 387-388, 2002.

[7] R. Larson. Geographic information retrieval and spatial browsing. In L.C. Smith and M. Gluck, editors, Geographic Infor-
mation Systems and Libraries: Patrons, Maps, and Spatial Information, pages 81-124. 1996.

[8] M. Li, S. Zhou, and C.B. Jones. Multi-agent systems for web-based map information retrieval. In Proc. 2nd GlScience,
number 2478 in Lect. Notes in Computer Science, pages 161-180, 2002.

[9] D.J.Peuquet and Z. Ci-Xiang. An algorithm to determine the directional relationship between arbitrarily-shaped polygons in
the plane. Pattern Recognition, 20(1):65-74, 1987.

[10] T. C. Shermer. A linear algorithm for bisecting a polygon. Information Processing Letters, 41:135-140, 1992.

[11] L. Talmy. How spoken language and signed language structure space differently. In Proc. COSIT 2001, number 2205 in Lect.
Notes in Computer Science, pages 274-262, 2001.

[12] M. van Kreveld and I. Reinbacher. Good NEWS: Partitioning a simple polygon by compass directions. Manuscript, 2002.

168

Significant-Presence Range Queries in Categorical Data

(extended abstract)

Mark de Berg* Herman J. Haverkort!

Abstract

In traditional colored range-searching problems, one wants to store a set of n objects with
m distinct colors for the following queries: report all colors such that there is at least one
one object of that color intersecting the query range. Such an object, however, could be an
‘outlier’ in its color class. Therefore we consider a variant of this problem where one has to
report only those colors such that at least a fraction 7 of the objects of that color intersects
the query range, for some parameter 7. We present efficient data structures for such queries
with orthogonal query ranges in sets of colored points, and for point stabbing queries in sets
of colored rectangles.

1 Introduction

Motivation. The range-searching problem is one of the most fundamental problem in compu-
tational geometry. In this problem we wish to construct a data structure on a set S of objects
in R?, such that we can quickly decide for a query range which of the input objects it inter-
sects. The range-searching problem comes in many flavors, depending on the type of objects in
the input set S, on the type of allowed query ranges, and on the required output (whether one
wants to report all intersected objects, to count the number of intersected objects, etc.). The
range-searching problem is not only interesting because it is such a fundamental problem, but also
because it arises in numerous applications in areas like databases, computer graphics, geographic
information systems, and virtual reality. Hence, it is not surprising that there is an enormous
literature on the subject—see for instance the surveys by Agarwal [1], Agarwal and Erickson [2],
and Nievergelt and Widmayer [4].

In this paper, we are interested in range searching in the context of databases. Here one
typically wants to be able to answer questions like: given a database of customers, report all
customers whose ages are between 20 and 30, and whose income is between $50,000 and $75,000.
In this example, the customers can be represented as points in R?, and the query range is an
axis-parallel rectangle.! This is called the (planar) orthogonal range-searching problem, and it has
been studied extensively.

There are situations, however, where the data points are not all of the same type but fall into
different categories. Suppose, for instance, that we have a database of stocks. Each stock falls into
a certain category, namely the industry sector it belongs to—IT, energy, banking, food, chemicals,
etc. Then it can be interesting for an analyst to get answers to questions like: “In which sectors
companies had a 10-20% increase in their stock values over the past year?” In this simple example,
the input data can be seen as points in 1D (namely for each stock its increase in value), and the
query is a one-dimensional orthogonal range-searching query.

Now we are no longer interested in reporting all the points in the range, but only the categories
that have points in the range. This means that we would like to have a data structure whose
query time is not sensitive to the total number of points in the range, but to the total number of

*Department of Computer Science, TU Eindhoven, P.O.Box 513, 5600 MB Eindhoven, the Netherlands.

TInstitute of Information and Computing Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the
Netherlands. The work by H.H. is supported by the Netherlands’ Organization for Scientific Research (NWO).

IFrom now on, whenever we use terms like “rectangle” or “box” we implicitly assume these are axis-parallel.

169

categories in the range. This can be achieved by building a suitable data structure for each category
separately, but this is inefficient if the number of categories is large. This has led researchers to
study so-called colored range-searching problems: store a given set of colored objects—the color
of an object represents its category—such that one can efficiently report those colors that have at
least one object intersecting a query range [3, 5, 6].

We believe, however, that this is not always the correct abstracted version of the range-
searching problem in categorical data. Consider for instance the stock example sketched earlier.
The standard colored range-searching data structures would report all sectors that have at least
one company whose increase in stock value lies in the query range. But this does not necessarily
say anything about how the sector is performing: a given sector could be doing very badly in
general, but contain a single ‘outlier’” whose performance has been good. It is much more natural
to ask for all sectors for which most stocks, or at least a significant portion of them, had their
values increase in a certain way. Therefore we propose a different version of the colored range-
searching problem: given a fixed threshold parameter 7, with 0 < 7 < 1, we wish to report all
colors such that at least a fraction 7 of the objects of that color intersect the query range. We call
this a significant-presence query, as opposed to the standard presence query that has been studied
before. (We also have some results on the case where 7 is not fixed beforehand, but part of the
query. Due to lack of space, these results are omitted.)

Problem statement and results. We study significant-presence queries in categorical data in
two settings: orthogonal range searching where the data is a set of colored points in R? and the
query is a box, and stabbing queries where the data is a set of colored boxes in R? and the query
is a point. In this extended abstract, we only discuss our results on orthogonal range searching.
We also omit several of the proofs.

Let S = S;U---US,, be a set of n points in R?, where m is the number of different colors
and S; is the subset of points of color class i. Let 7 be a fixed parameter with 0 < 7 < 1. We are
interested in answering significant-presence queries on S: given a query box @, report all colors ¢
such that |QNS;| > 7-]S;|. For d = 1, we present a data structure that uses O(n) storage, and that
can answer significant-presence queries in O(logn + k) time, where k is the number of reported
colors. Unfortunately, for d > 2, we have not been able to design a data structure using near-linear
storage with logarithmic query time for this problem. As a data structure with quadratic or more
storage is prohibitive in practice, we study an approximate version of the problem. More precisely,
we study e-approzimate significant-presence queries: here we are required to report all colors
with |Q N S;| > 7-]S;|, but we are also allowed to report colors with |Q N S;| > (1 —¢)7-|S;|, where
€ is a fixed positive constant. For such queries we have developed a data structure that uses only
O((1/(re)?=1m)'*+%) storage, for any § > 0, and that can answer queries in O(logn + k) time,
where k is the number of reported colors. Note that the amount of storage does not depend on n,
the total number of points, but only on m, the number of colors. This should be compared to the
results for the previously considered case of presence queries on colored points sets. Here the best
known results are: O(n) storage with O(logn + k) query time for d = 1 [6], O(nlog®n) storage
with O(logn + k) query time for d = 2 [6], O(nlog” n) storage with O(log®n + k) query time for
d = 3 [5], and O(n'*?) storage with O(logn + k) query time for d > 4 [3]. Note that these bounds
all depend on n, the total number of points; this is of course to be expected, since these results
are all on the exact problem, whereas we allow ourselves approximate answers.

2 Orthogonal range queries

One of the difficulties in significant-presence queries is that the problem is not readily decom-
posable: we cannot decide whether a color is significantly present in a range @ if we just know
whether or not certain subsets of that color are significantly present in). In this respect, standard
presence queries are easier: a color is present in () iff a subset of that color is present in (). Hence,
our approach is to first reduce significant-presence queries to standard presence queries. We do
this by introducing so-called test sets.

170

Test sets for orthogonal range queries Let S be a set of n points in R?, and let 7 be a fixed
parameter with 0 < 7 < 1. A set T of boxes—that is, axis-parallel hyperrectangles—is called a
T-test set for S if the following holds:

e any box from T contains at least 7n points from S;

e any query box () that contains at least 7n points from S fully contains at least one box from 7'.
This means that we can answer a significant-presence query on S by answering a presence query
on T': a query box () contains at least 7n points from S if and only if it contains at least one box
from T. We did not yet reduce the problem to a standard presence-query problem, because T
contains boxes instead of points. However, we can map the set T of boxes in R¢ to a set of points
in Reals®?, and the query box @ to a box in R?>¢ | in such a way that a box b € T is fully contained
in @ if and only if its corresponding point in Reals?? is contained in the transformed query box.?
This means we can apply the results from the standard presence queries on colored point sets.

It remains to find small test sets. As it turns out, this is not possible in general: below we
show that there are point sets that do not admit test sets of near-linear size. Hence, after studying
the case of exact test sets, we will turn our attention to approximate test sets.

Exact test sets. It is easy to see that any minimal box containing at least 7n points from
S—that is, any box b containing at least 7n points from S such that there is no box b’ # b with
b' C b and containing 7n or more points—must be a box in T', and that the collection of all such
minimal boxes forms a 7-test set. Hence, the smallest possible test set consists exactly of these
minimal boxes. In the 1-dimensional case a box is a segment, and a minimal segment is uniquely
defined by the point from S that is its left endpoint. This means that any set of n points on the
real line has a test set of size (1 — 7)n + 1. Unfortunately, the size of test sets increases rapidly
with the dimension, as the next lemma shows.

Lemma 2.1 For any set S of n points in R?, there is a T-test set of size O(1%*n??~1)., Moreover,

there are sets S for which any T-test set has size Q(7? 1n??~1). (proof omitted from this abstract)

Approximate test sets. The worst-case bound from Lemma 2.1 is quite disappointing. There-
fore we now turn our attention to approximate test sets: a set 71" of boxes is called an e-approzimate
T-test set for a set S of n points if

e any box from T contains at least (1 — €)7n points from S;

e any query box @ that contains at least 7n points from S fully contains at least one box from T'.
This means we can answer e-approximate significant-presence queries on S by answering a presence
query on 7T'.

Lemma 2.2 For any set S of n points in RY (d > 1) and any € with 0 < ¢ < 1/2, there is an
g-approximate T-test set of size (2d — 1)2¢=1/(e2¢=1724=2) Moreover, there are sets S for which
any e-approximate T-test set has size Q((1/¢)2?=1(1/7)9).

Proof. We will prove an upper bound of ((2d — 1)/(e7))??~! here; an improvement of a factor 7
can be attained with a divide-and-conquer variation of the construction described below. Due to
lack of space, we omit the details of the divide-and-conquer approach from this extended abstract.

To prove the upper bound of ((2d — 1)/(e7))?¢~!, we proceed as follows. We construct a
collection Hy of (2d—1)/(e7) hyperplanes orthogonal to the z;-axis, such that there are eTn/(2d—
1) points of S between any pair of consecutive hyperplanes.®> We do the same for the other axes,
obtaining sets Ho,...,Hy of hyperplanes. From these collections of hyperplanes we construct
our test set as follows. Take any possible subset H* of 2d — 1 hyperplanes from H; U---U Hy
such that H; up to Hy_ 1 each contribute exactly two hyperplanes to H*, and H, contributes one
hyperplane. Let b(H*) be the smallest box that is bounded by the hyperplanes from H*, contains

2In fact, the transformed box is unbounded to one side along each coordinate-axis, so it is a d-dimensional
‘octant’.

3If there are more points with the same x1-coordinate, we have to be a bit careful. The details are omitted from
this extended abstract.

171

exactly (1 —¢)7rn points from S, and lies above the hyperplane we picked from Hy. If b(H*) exists,
we add it to our test set T'. Clearly, the size of T is at most ((2d — 1)/(eT))?? 1.

We now argue that 7' is an e-approximate 7-test set for S. By construction, every box in
T contains at least (1 — €)7n points, so it remains to show that every box () that contains at
least 7n points from S fully contains at least one box from 7. To see this, observe that for
any ¢ with 1 < ¢ < d, there must be a hyperplane hgl) € H; that intersects () and has at
most ern/(2d — 1) points from @ NS ‘below’ it. Similarly, there is a hyperplane héz) € H;
intersecting @ with at most eTn/(2d — 1) points from @ NS ‘above’ it. Note that hy) # hgi). Now
consider the box b bounded by the hyperplanes in the set H* := {h{" a{", ... n{*™D pld=Y pliy
and unbounded in the positive z4-direction. The number of points from S in b N () is at least
|QNS|—(2d—1)-etn/(2d—1) > (1 —¢)rn. Hence, the box b(H*) € T is not larger than bN Q
and, hence, it is contained in Q.

The lower-bound construction is omitted in this extended abstract. O

Putting it all together. Tosummarize, the construction of our data structure for e-approximate
significant-presence queries on S = S; U ---U S, is as follows. We construct an e-approximate
7-test set T; for each color class S;. This gives us a collection of O(1/(e2?~1729=2)m) boxes in R?.
We map these boxes to a set P of colored points in R*?, and construct a data structure for the
standard colored range-searching problem (that is, presence queries) on P, using the techniques
of Agarwal et al. [3]. Their structure was designed for searching on a grid, but using the standard
trick of normalization—replace every coordinate by its rank, and transform the query box to a
box in this new search space in O(logn) time before running the query algorithm—we can employ
their results in our setting.

The same technique works for exact queries, if we use exact test sets. This gives a good result
for d = 1, if we use the results from Gupta et al. [5] on quadrant range searching.

Theorem 2.1 Let S = S; U---US,, be a colored point set in R?, and 7 a fixed constant with
0 <7 < 1. Ford =1, there is a data structure that uses O(n) storage such that exact significant-
presence queries can be answered in O(logn + k) time, where k is the number of reported colors.
For d > 1, there is, for any ¢ with 0 < ¢ < 1/2 and any § > 0, a data structure for S that uses
O((1/(e23=1724=2)m)1+9) storage such that e-approximate significant-presence queries on S can
be answered in O(logn + k) time.

Acknowledgements We thank Joachim Gudmundsson and Jan Vahrenhold for inspiring dis-
cussions about the contents of this paper.

References

[1] P.K. Agarwal. Range Searching. In: J. Goodman and J. O’Rourke (Eds.), CRC Handbook of Computational
Geometry, CRC Press, pages 575-598, 1997.

[2] P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In: B. Chazelle, J. Goodman, and
R. Pollack (Eds.), Advances in Discrete and Computational Geometry, Vol. 223 of Contemporary Mathemat-
ics, pages 1-56, American Mathematical Society, 1998.

[3] P.K. Agarwal, S. Govindarajan, and. S. Muthukrishnan. Range searching in categorical data: colored range
searching on a grid. In Proc. 10th Annu. European Sympos. Algorithms (ESA 2002), pages 17-28, 2002.

[4] J. Nievergelt and P. Widmayer. Spatial data structures: concepts and design choices. In: J.-R. Sack and
J. Urrutia (Eds.) Handbook of Computational Geometry, pages 725-764, Elsevier Science Publishers, 2000.

[5] J. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection searching problems: counting,
reporting, and dynamization. In Proc. 3rd Workshop on Algorithms and Data Structures, LNCS 709, pages
361-373, 1993.

[6] R. Janardan and M. Lopez. Generalized intersection searching problems. Internat. J. Comput. Geom. Appl.
3:39-70 (1993).

172

Efficient Contour Tree Construction and

Computation of Betti Numbers in Scalar Fields

Tobias Lenz*

Ginter Rote*

Submitted to the 19th European Workshop on Computational Geometry, 2003

Abstract

A new algorithm to construct contour trees is in-
troduced which improves the runtime of known ap-
proaches. It also generates additional topological in-
formation about the data which can be used to com-
pute the Betti numbers for all possible level sets.

1 Introduction

Visualizing Contours in Scalar Fields. A com-
monly used technique to store large amounts of data
is in a scalar field. This data could be measurement
results in any dimension, e.g. elevation information
in geographic information systems. The visualiza-
tion of the data is usually done by drawing level sets
which are points of equal value. A connected com-
ponent in a level set is called contour. In two di-
mensions the scalar value can be interpreted as the
height over a two-dimensional domain. In general the
domain should be given as a simplicial complex and
the scalar values are interpolated over discreet values
at the vertices.

The Contour Tree. To grant high speed for inter-
active systems drawing contours, an efficient struc-
ture is needed. Quickly drawing a level set includes
the knowledge of how many connected components
the system has to draw and where they are. It is suf-
ficient then to have a single simplex through which

*Institut fiir Informatik, Freie Universitdt Berlin, Takus-
trafle 9, 12247 Berlin, Germany,
tlenz, rote@inf.fu-berlin.de

the requested contour passes, a so called seed. By re-
cursively checking the simplices in its neighborhood
the whole connected component of the level set can
be traced.

The contour tree is helpful for creating a sufficient
set of seeds. Every node in the contour tree represents
a point at a level where the number of components
changes. Every edge in the contour tree spans the
interval between the values of the represented points
of the two incident nodes and represents a connected
component. This works for any dimension.

Betti Numbers. In some applications topological
information about the surface is needed, e.g. the
Betti numbers. In topology the i-th Betti number 3;
is defined as the rank of the i-dimensional homology
group. For a d-dimensional object the Betti num-
bers B4, Ba+1, - - - are all zero. In this paper the Betti
numbers are only computed for up to three dimen-
sions, therefore we only care about (g, 31, 82. They
have a very graphic meaning: [y is the number of
connected components, #; is the number of tunnels
through them and fs is the number of enclosed voids.

Previous Work. Carr et al. [1] presented a fast
sweep algorithm. They do two simple sweeps over
the data in order of increasing and decreasing scalar
values to create two trees. In a third step these trees
are combined to the final contour tree. The required
time is O (N +nlogn) for any dimension where N
denotes the size of the simplicial complex and n the
number of vertices.

Pascucci [2] augmented the contour tree for three

173

A D
4 B
600 .\\//.
500
C
\)
400 /
EX_F
G
H
J I
300
4 “u
L K
M
200 / }V
0]

(b)

Figure 1: A contour map and the corresponding contour tree. Minima and maxima are indicated by squares

and circles, and crosses denote saddle points.

dimensional meshes with the Betti numbers in addi-
tional O (Nlog N) time. The contour tree already
gives fy. B2 can be obtained by checking the bound-
ary — a closed surface encloses a void, an open one
does not. 1 can than be obtained by computing the
Euler characteristic x and than solving the formula

X=X (-1 B

2 Definitions

The Input. The input for the algorithm consists
of a d-dimensional simplicial complex S which forms
a bounded volume D C R%. The scalar field is rep-
resented by a function f : D — R which assigns a
scalar value to every vertex in .S and interpolates the
rest of D linearly.

N denotes the number of d-dimensional simplices,
so the size of the input is O(N). The number of
vertices in S is denoted by n. In d dimensions
N = O (nl4/21) but for “nicely shaped” D, a small
triangulation can be found such that N = O(n).

It is assumed for simplicity that the values of f
are distinct over all vertices in S. The same offect
can easily be achieved e.g. by ordering points lexi-
cographically after their coordinates if they have the
same function value.

Critical Points. In this paragraph the term neigh-
borhood N (v) of a vertex v denotes the subgraph of S
induced by the vertices in S adjacent to v with v be-
ing excluded. Let Ny (v) and N_(v) be the subgraphs
of N(v) induced by the vertices w with f(w) > f(v),

174

fw) < f(v) respectively. Cy(v),C—(v) denote the
number of connected components of N (v), N_(v).

A local mazimum obviously only has lower neigh-
bors, therefore C'y = 0, while a local minimum only
has higher neighbors so C_ = 0. A regular point v
is a point with C; (v) = C_(v) = 1. All other points
are saddle points. The saddle points together with
the local extrema are the critical points. Topological
changes, including changes in the number of compo-
nents, only occur at critical points.

Using these definitions, it is possible to determine
the type for every point in S locally by scanning its
neighborhood. This takes O(N) time.

3 The Contour Tree

Join Tree and Split Tree. The upper level set,
the lower level set, and the (equality) level set of f
at value h are defined as

fo(h)i={z e D| f()>h},

f<(h):={z €D | f(x) <h},

f(h):={x €D | f(x) = h}.
A contour is a connected component of a level set
f=(h). Sweeping through the data by decreasing h,
the set fs grows while f. shrinks continuously, and
f= is their common boundary. The join tree rep-
resents the evolution of the components of the set
f>(h) as h varies. The split tree is defined similarly
for sweeping by increasing h.

Looking at the components of fs (h) as h decreases
the following events can happen.

(a) A new component may appear, starting out at a
local maximum.

(b) Several components may merge into a single one
at a saddle point.

(c) There may be topological changes which do not
change the number of components

Also, events of types (b) and (¢) may occur together.
Join Tree Construction. Assume all saddle

points are known and they are sorted by their func-
tion value. We scan all saddle points v in decreasing

order of f(v). For each v, we select a neighbor w in
each of the C (v) components of N4 (v). We process
each w by starting a monotone increasing path at w,
continuing until we get stuck in a local maximum or
we hit a previously visited vertex.

To maintain the connected components a UNION-
FIND data structure is used with the set of saddle
points as the ground set. If a monotone path hits
a vertex z which was already visited, we FIND its
component. If z is not already in the same component
as v, we add an edge from v to the lowest vertex in
the component of z to the join tree and we perform
the UNION of the components containing v and z.

The case when a monotone path ends in a local
maximum r is easy: We simply add an edge from v
to a new vertex representing r to the join tree.

It may happen that a saddle point receives only
one outgoing edge in the join tree because it just re-
flects a change in topology and not in connectivity
(like a change from a torus to a sphere). We leave
these vertices of degree two in the tree during the
construction, and can eliminate them in a final pu-
rification step after combining the join and split tree
to the contour tree.

Theorem 1 Creating the join tree takes time for
saddle points identification, for sorting and for the
monotone paths. This is in total O(N + tlogt +
m+sa(s,t)) time for t saddle points, m denoting the
number of edges in S and s = ' C(v) is the sum
over all higher neighboring components of all saddles.
This simplifies to O(N + tlogt).

The theorem holds for the split tree respectively.

Combining Two Trees. The Algorithm to com-
bine the join tree with the split tree is explicitly
shown in [1] and it takes O(t) time for ¢ nodes in
the final contour tree.

4 Computing Betti Numbers

Contour Tree with All Critical Points. Usu-
ally the contour tree only gives information about
connectivity which is sufficient for drawing connected

175

components. In three and higher dimensions saddle
points exist which do not change the number of con-
nected components. Following the algorithm in sec-
tion 3 these saddle points are nodes in the contour
tree with degree two and in this section the tree con-
taining all critical points is refered to as ECT —
extended contour tree.

Algorithmic Idea. The following only holds for
up to three dimensions. The ECT provides all points
which cause changes in topology and also the infor-
mation on which connected component the change
occurs. This is sufficient for calculating the Betti
numbers for every possible level set.

Assume the critical points v; ordered by decreasing
function value. The Betti numbers for every interval
(f(vi), f(vit1)) are stored in a tree structure with the
following simple loop.

The nodes in the ECT are processed from top to
bottom. For every node the type is determined and
the Betti numbers for the next interval are changed
according to that type.

For every node in the ECT the type is known af-
ter the construction of the ECT. Possible types are
local maximum or local minimum, a saddle uniting
two components in the join tree (join) or uniting a
component with itself (pseudo-join). The same types
of saddle points can occur in the split tree denoted
by split and pseudo-split.

Betti Numbers for Volumes. The ob-
ject of interest may be the volumetric ob-
ject {z € D] f(x) >w} instead of the surface

fY(w) = {z€D| f(z) =w}. In this case, parts
once connected always stay connected.

For volumetric objects the edges do not always cor-
respond to the number of components. The edges
from a split are complementary components also
known as voids.

In a pre-processing step, every leaf in the ECT cor-
responding to a boundary vertex in S has to be re-
moved if the neighbor has a higher function value.
This has to be done iteratively, as new such leafs
may appear during the process. This removes the
topological changes on the “outside” of the object.

The following changes occur at critical points
sweeping from higher to lower function values.

Local mazimum v;: A new component starts at
f(v;) and at f(v;) — € it becomes a solid ball. This
implies to increment 5y and [, f2 are not changed.

Join: Several components are connected. [y de-
creases by the number of edges to nodes with higher
function value. [, f2 are not changed.

Pseudo-join: A component is connected to itself
(maybe several times) which creates one or more
“handles” and thereby increases the number of tun-
nels. (i is increased by the number of how many
times the component is connected to itself.

Pseudo-split: A tunnel or several ones through the
object close. This is the analogous case to a pseudo-
join, so f; is decreased in the same fashion.

Split: A ball in the complement is split into several
ones. The resulting number of voids is one for each
neighboring node with lower function value.

Local minimum v: A void becomes very small for
f(v)+e, is only a point at f(v) and vanishes at f(v)—
€. Therefore 8, decreases by one.

Betti Numbers for Surfaces. Every closed sur-
face contains a void, therefore a component usually
increases the number of components and the number
of voids. A surface with boundary is open and there-
fore does not contain a void. A surface can only be
open if it touches the boundary of D. This is easy
to check if the contour tree does not only contain all
critical points but also special boundary vertices of
S. This increases the runtime of the contour tree
algorithm.

References

[1] Hamish Carr, Jack Snoeyink, and Ulrike Axen.
Computing contour trees in all dimensions. In
11th ACM/SIAM Symposium on Discrete Algo-
rithms, pages 918-926, 2000.

[2] Valerio Pascucci. On the topology of the level
sets of a scalar field. In Lawrence Livermore
National Laboratory technical report UCRL-JC-
142262, February 2001.

176

Author Index

Abellanas, M.................... 81, 147
Agarwal, PK. ... 7
Aichholzer, O........... 89
Alboul, L.o 109
Andersson, M............ 155
Aronov, B. ... 93
Asano, T......o i 9
Barcia, JJA. 23
Boaz, B-M, 121
Bose, P ..o 101
Bremner, D...... ... oL 89
Caceres, J........oo il 53, 65
Clausen, M. T 69
Colin de Verdiere, E. 85
Coll, Noo oo 27
Cortés, C..oovvviii i 81
Czyzowicz, J... oo 101
Diaz-Béanez, JM..................... 23
de Berg, M. 169
Demaine, E.D........... ... 89
Fekete,S.P. 15
Fischer, Th. 35
Fischer, To........................... 35
Fukuda, K.......................... 117
Gémez, F......... o 23
Ghodsi, M. 137,159
Grine, A. 61
Grima, C.I............oo L 65
Gudmundsson, J............... 105, 155
Halperin, D..... ... il 41
Haverkort, H.J................. 105, 169
Hernandez, G........................ 81
Houle, M., o7
Hsiang, T--R,.................... ... 125
Hurtado, F........... 27,57, 89, 97, 147
Icking, C....ooooiii i 147
Jaromezyk, JW..........ooooooL 49
Kashiwabara, K...................... 7
Katz, M.J........oooool 121, 129
Kedem, K. 151
Khosravi, R......................... 137
Klein, R. ... 61
Koltun, V....... ... 93
Kranakis, E.......................... 89

Krasser, H. 89
Langetepe, E....... 61
Lazarus, F......o 85
Leiserowitz, E.......... 41
Lenz, T.....o o 173
Levcopoulos, C. 155
Marquez,A. 53, 65, 81
Ma, M. 147
Meijer, H. ... 15
Mitchell, J.S.B................ . 129
Moreno-Gonzalez, A. 65
Morin, P.......oo o 101
Mosig, Ao 96
Mourrain, B. ... oL 31
Nakamura, M........................ 7
Netchaev, A. 109
Nir, Yo oo 129
Noy, M. ..o 57
O Dunlaing, C............... 19
Oellermann, O.R..................... 53
Okamoto, Y.........oooiii .. 7
Orden, D. ... i 73
Palop, B..........o 147
Paz, C......ooo i 121
Petit, J-P.......oooooo 117
Pezarski,A........................... 49
Puertas, M.L......................... 53
Rabaev, I......o o L. 151
Ramaswami, S....................... 89
Ramos, PA........ 147
Razzazi, M.R.................... ... 113
Reinbacher, I. 165
Rivera-Campo, E. o7
Rostamabadi, F..................... 159
Rote, G, 173
Sack,J-R. ... 11
Sajedi, A. ... 113
Santos, F........ ...l 73
Seara, C. ... 97
Sellares, JJA. ...l 27
Sethia, S............., 89, 97
Sharir, M. o 93
Slusarek, M. 49
Sokolovsky, N....... 151

177

Spillner, A.................. 143

Sztainberg, M......... 125
Técourt, J-P.............o L. 31
Toéth, CD. ..o 133
Teillaud, M., 31
Urrutia, J.........oo oo 89
Valenzuela, J......................... 81
van Kreveld, M. 105, 165
Ventura, I........... 23
Wood, DR. ... 101
Zylinski, P. ... o 45

178

