Red-Blue Separability Problems in 3D *

Ferran Hurtado |

1 Introduction

Let B and R be two disjoint sets of points in 3D
classified as blue and red points, respectively.
Let n be the number of points in B and R. We
consider the sets of points in general position,
thus there are no four points in a plane and no
three points on a line. Let C be a family of sur-
faces in 3D. The sets B and R are C separable
if there exists a surface S € C such that every
connected component of R® — S contains points
only from B or from R. If S is a plane, we have
linear separability. The decision problem of lin-
ear separability for two disjoint sets of objects
(points, segments, polygons or circles) in 2D or
(points, segments, polyhedra or spheres) in 3D
can be solved in linear time [8, 13].

In [1, 10, 11] the authors study the separa-
bility of two disjoint point sets in the plane by
the following criteria: wedge separability, strip
separability and double wedge separability. Op-
timal ©(nlogn) time algorithms for deciding
wedge, strip, and double wedge separability, as
well as for constructing the locus of feasible
apices of wedges and double wedges, and the
interval of feasible slopes of strips are described
in [1, 10, 11]. They have also shown how to find
wedges and double wedges with maximum and
minimum aperture angle, and the narrowest and
the widest strips.

In this abstract we summarize results from
our work on separability of two disjoint point
sets in 3D that extends the criteria above and
gives solutions to various separability problems.
For each separability criterion we consider the
problem of deciding whether that particular sep-
arability is feasible, which is probably equiv-
alent to finding one solution to the problem;
in some cases, we also consider the problem of
finding partial descriptions of all feasible solu-
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tions. For some separability criteria we con-
sider, the convex hull of either the red or blue
points needs to be monochromatic. If it is so,
we perform this check as a first step in our algo-
rithms in O(nlogn) time by computing CH(R)
and CH(B) [14]. First, we consider the problem
of computing all the feasible solutions for linear
separability. Second, we study slice, wedge, and
diwedge separability as the natural extensions
in 3D for strip, wedge, and double wedge sep-
arability in 2D. Third, we study the decision
problem for prismatic, pyramidal, and dipyra-
midal separability, which also can be considered
as extensions in 3D for strip, wedge, and double
wedge separability criteria, but allowing a linear
number of planes. Finally, we study some sep-
arability criteria defined by a constant number
of planes.

We provide proof for one of our results (slice
separability) and state others without proof due
to space constraint.

2 Linear separability

The decision problem of linear separability for
two disjoint point sets in 3D can be solved in
linear time [13]. The problem of computing all
feasible solutions is solved by the next theorem.

Theorem 1. The locus of all the planes sepa-
rating B and R can be computed in ©(nlogn)
time. Once we have pre-computed the locus, to
decide whether a given plane separates the point
sets can be done in O(logn) time.

The problem of computing the maximum
Euclidean distance between two parallel sepa-
rating planes has been solved by Houle [8] with
the following theorem.

Theorem 2. [8] Given two point sets in R?,
then a separating hyperplane which minimizes
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the orthogonal Fuclidean distance between the
hyperplane and the point sets may be found, or
its non-existence determined, in O(n) time.

A consequence is the following corollary.

Corollary 1. The widest separating slice de-
fined by two parallel separating planes of B and
R can be computed in O(n) time.

3 Separability by two planes

In this section we study slice, wedge, and di-
wedge separabilities, which involve exactly two
separating planes.

3.1

A slice is defined as the space between two par-
allel planes. The normal vector to the planes of
the slice is called the slice direction. The slice
separability problem asks the question: Is there
a slice that contains all the red points but does
not contain any blue point or vice versa?

Slice separability

Theorem 3. Deciding whether the sets B and
R are slice separable can be done in O(n?) time.
The locus of slice directions of all feasible solu-
tions can be computed in O(n®logn) time and
the complezity of the locus is ©(n?).

Proof. (Sketch) Let u be the slice direction of
a separating slice which contains R. Let B
(B2) be the set of blue points above (below) the
slice. A plane 7; with normal vector u passing
through any red point r is a separating plane of
B, and B,. While keeping the point r on m,
we can move u around with two degrees of free-
dom until it bumps into two blue points by and
by. Thus, a separating slice (if it exists) can be
found by the following O(n?) time algorithm.

1. Choose a red point r € R.

2. For each pair of blue points by and b2, com-
pute the plane 7; passing through by, b2,
and r. Compute B; (Bs), the set of blue
points above (below) .

3. By linear programming compute a sepa-
rating slice (if it exists) defined by two
parallel planes such that one separates By
from R U B, and, the other one separates
RU B1 from Bz.

In order to compute the set of slice directions of
all the feasible solutions we proceed as follows.

3.1. Compute CH(B,), CH(B>), CH(RUB),
and CH(R U By).

3.2. Compute the region on the unit sphere
formed by the set of directions of the
separating planes between CH(B;) and
CH(R U Bs). Proceed analogously with
CH(R U B;) and CH(B>). We obtain
two regions each bounded by at most two
convex chains with O(n) complexity. The
projection of each region on the plane
z = 1 is either a convex polygon or two
unbounded convex polygons.

3.3. Compute the intersection of the two re-
gions in O(n) time. Its boundary corre-
sponds to parallel planes which are always

touching CH(R) and some blue point.

Thus, in additional O(n logn) time, we can com-
pute the convex region on the unit sphere de-
fined by the set of slice directions of all feasible
solutions for each good partition. In full paper,
we also show that the locus on the unit sphere
of the set of slice directions of all feasible so-
lutions is formed by at most O(n?) connected
components, each one with at most linear com-
plexity, and the total complexity of the locus is
0O(n?). O

The width of a separating slice is defined by
the distance between the two parallel planes. It
is natural to ask about the narrowest and the
widest separating slices.

Theorem 4. Once we have pre-computed the
set of slice directions of the separating slices for
B and R, the widest and the narrowest sep-
arating slices can be computed in O(n®) and
O(n%logn) time, respectively.

3.2 Wedge separability

Two intersecting planes divide the 3D space into
four quadrants. Any one quadrant is called a 3D
wedge. The wedge separability problem is the
following: Is there a wedge that contains R but
does not contain any blue point or vice versa?

Theorem 5. Deciding whether B and R are
wedge separable can be done in O(n®) time.

For wedge separable point sets we ask about
a separating wedge with maximum or minimum
aperture angle. The wedge with minimum aper-
ture angle is related to slice separability (a slice
can be considerer as a wedge with aperture angle
0°) and the wedge with maximum aperture an-
gle is related to linear separability (if the aper-
ture angle is close to 180° then, we have a good
approximation to linear separability).
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Theorem 6. Computing a separating wedge for
B and R with maximum or minimum aperture
angle can be done in O(n®logn) time.

A natural problem is to decide whether there
exists a separating wedge with a fixed aperture
angle 0, 0° < 6 < 180°. Note that if we have
pre-computed the separating wedges with maxi-
mum and minimum aperture angle, the problem
is not solved because it may be that B and R
are not wedge separable for all possible values
of aperture angle between the minimum and the
maximum.

Theorem 7. Computing a separating wedge for
B and R with fized aperture angle can be done
in O(n?logn) time.

3.3 Diwedge separability

Two intersecting planes divide the 3D space into
four quadrants. The union of a pair of oppo-
site quadrants is called a diwedge. The diwedge
separability problem is the following: Is there a
diwedge that contains R but does not contain
any point from B or vice versa?

Theorem 8. Deciding whether the sets B and
R are diwedge separable can be done in O(n*)
time.

We define the aperture angle of a diwedge to
be the bigger of the two aperture angles defined
by the planes of the diwedge. We consider the
problem of computing the separating diwedge
with maximum or minimum aperture angle. As
per the definition, the aperture angle can take
values between 90° and 180°.

Theorem 9. Computing a separating diwedge
for B and R with mazximum or minimum aper-
ture angle can be done in O(n*logn) time.

We also consider the problem of deciding
whether there exists a separating diwedge with
a fixed aperture angle 6, 90° < 6 < 180°.

Theorem 10. Computing a separating diwedge

for B and R with fized aperture angle can be

done in O(n*logn) time.

4 Separability by a linear number of
planes

In this section we study other separability cri-
teria which can be consider also as extensions
for slice, wedge and double wedge separability
in the plane, but allowing a linear number of
planes. More precisely, we extend the concepts
above to prismatic, pyramidal and dipyramidal
separability, respectively.

Prismatic separability

4.1

A prism is defined as the space swept by a con-
vex polygon when it is moved along a line per-
pendicular to its plane; the direction of this line
is called the prism direction. The prismatic sep-
arability problem asks the question: Is there an
infinite prism which contains all red points but
none of blue points or vice versa?

Theorem 11. Deciding whether the sets B and
R are prismatic separable and computing the lo-
cus of the prism directions of all feasible solu-
tions can be done in O(n®) time. The locus is
formed by at most O(n?) connected components
and its total complezity is O(n’a(n)).

A still open problem is how can we find a
minimum (in number of faces) separating prism?
The minimum prism has at least three faces,
hence this must address the question of decid-
ing triangular prismatic separability which will
be consider in section 5. We can compute the
minimum separating prism for a given direction
of prism u. This problem is equivalent to com-
puting the minimum (in number of edges) con-
vex polygon which separates the projected red
and blue points on a plane with normal vector u;
this problem can be solved in O(n logn) optimal
time [1, 7].

4.2 Pyramidal separability

Join all the vertices of a convex polygon to a
point in space to get a pyramid. The convex
polygon is called the base of the pyramid while
the point in space is called its apex. An infinite
pyramid is one whose base is at infinity. The
pyramidal separability problem asks the ques-
tion: Is there an infinite pyramid that contains
all the red points but none of the blue points or
vice versa?

Theorem 12. Deciding pyramidal separability
for B and R and computing the locus of apices
of all the separating pyramids can be done with
a randomized algorithm whose expected running
time is O(n®log® n). The locus of apices of sep-
arating pyramids is formed by O(n3) connected
components with O(n>logn) total complezity.

Next theorem shows a deterministic algo-
rithm for solving the decision problem.

Theorem 13. Deciding whether the sets B and
R are pyramidal separable can be done in O(n")
time.
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4.3 Dipyramaidal separability

Dipyramidal separability has the same defini-
tion as pyramidal separability except that now
we have two symmetrical pyramids having the
same apex. Assume that the red points R are
inside the possible separating dipyramid which
produces a partition of R.

Theorem 14. Deciding whether the sets B and
R are dipyramidal separable can be dome in
O(n®logn) time.

5 Separability by a constant number of
planes

In this section we study some particular separa-
bility criteria which involve three to six planes.
More precisely, we consider triplane, triangular
prism, tetrahedral and box separability.

Three intersecting planes divide the 3D
space into eight octants. The triplane separabil-
ity problem asks the question: Are there three
planes such that each of the octants they define
has points of only one color?

Theorem 15. Deciding whether the sets B and
R are triplane separable can be done in O(n")
time.

The triangular prismatic separability prob-
lem asks the question: Is there an infinite tri-
angular prism which contains all the red points
but none of the blue points or vice versa?

Theorem 16. Deciding whether the sets B and
R are triangular prismatic separable can be done
in O(n®) time.

The tetrahedral separability problem asks
the question: Is there a tetrahedron that con-
tains all the red points but none of the blue
points or vice versa?

Theorem 17. Deciding whether the sets B and
R are tetrahedral separable can be done in O(n")
time.

The box separability problem asks the ques-
tion: Is there an orthogonal box which contains
all the red points but none of the blue or vice
versa?

Theorem 18. Deciding whether the sets B and
R are box separable can be done in O(n") time.
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