Chips on Wafers, or Packing Rectangles into Grids

Mattias Andersson*

In the VLSI wafer industry it is nowadays
common that multiple projects share a single
fabrication matrix (the wafer); this permits fab-
rication costs to be shared among the partici-
pants. No a priori constraints are placed on ei-
ther the size of the chips nor on the aspect ratio
of their side lengths (except the maximum size
of the outer bounding box). After fabrication,
in order to free the separate chips for delivery
to each participant, they must be cut from the
wafer. A diamond saw slices the wafer into sin-
gle chips. However cuts can only be made all
the way across the bounding box, i.e., all chips
must be placed within a grid. A grid is a pat-
tern of horizontal and vertical lines (not neces-
sarily evenly spaced) forming rectangles in the
plane. There are some practical constraints, for
example, the distance between two parallel cuts
cannot be infinitely small, since machines with a
finite resolution must be programmed with each
cut pattern. Although some of these constraints
may simplify the problem we will not consider
them in this paper. This application leads us to
define grid packing as follows.

Definition 1 A set of rectangles S is said to
be grid packed if there exists a rectangular grid
such that every rectangle lies in the grid and
there is at most one rectangle of S in each cell,
as illustrated in Fig. 1. The area of a grid pack-
ing is the area of a minimal bounding box that
contains all the rectangles in the grid packing.

The general problem considered in this paper
is now stated.

MAGP [Minimum area grid packing] Given a
set S of rectangles find a minimum area grid
packing of S.

We also consider several interesting variants
of the problem, for example:

*Department of Computer Science, Lund Univer-
sity, Box 118, 221 00 Lund, Sweden. E-mail:
mattias@cs.lth.se, christos@cs.lth.se.

TTechnical University Eindhoven, Department of
Computing Science, P.O. Box 513, 5600 MB Eindhoven
E-mail: h.j.gudmundsson@tue.nl

Joachim Gudmundsson?

Christos Levcopoulos*

MAKGP [Minimum area k-grid packing]
Given a set of n rectangles and an integer
k < n compute a minimum area grid
packing containing at least k rectangles.

MAGPAR [Minimum area grid packing with
bounded aspect ratio] Given a set S of rect-
angles and a real number R, compute a
minimum area grid packing whose bound-
ing box aspect ratio is at most R.

MWP [Maximum wafer packing] Given a set
of rectangles S and a rectangular region A
compute a grid packing of &’ C S on A
such that |.S’| is maximized.

MNWP [Minimum number of wafers packing]
A plate is a pre-specified rectangular re-
gion. Given a set of rectangles S compute
a grid packing of S onto a minimal number
of plates.

MDGP [Minimum diameter grid packing]
Given a set S of rectangles find a minimum
diameter grid packing of S.

A problem that is similar to grid packing is
the tabular formatting problem [5]. In the most
basic tabular formatting problem one is given
a set of rectangular table entries and the aim
is to construct a table containing the entries
in a given order for each row and column. A
problem more similar to ours, with the excep-
tion that the rectangles cannot be rotated, was
considered by Beach [3] under the name ”Ran-
dom Pack”. Beach showed that Random Pack
is strongly NP-hard.

Our main result is a PTAS for the MAGP-
problem and some of its variants. Surprisingly,
if the value of ¢ is a large enough constant the
algorithms will run in linear time.

The approximation algorithms all build upon
the same ideas. The main idea is that for every
possible grid G there exists a grid G’ that can
be uniquely coded using only O(logn) bits such
that the area of G’ is at most a factor (1 + ¢)
larger than the area of G. Now, let F be the fam-
ily of these grids that can be uniquely coded us-
ing O(logn) bits. It trivially follows that there

155

Figure 1: Input is a set of rectangles S. Output
a grid packing of S

are only a polynomial number of grids in F.
Hence, every grid G’ in F can be generated and
tested. The test is performed by computing a
maximal packing of S into G’, which in turn is
done by transforming the problem into an in-
stance for the max-flow problem, i.e, given a
directed graph with a capacity function for each
edge, find the maximum flow through the graph.
To obtain a PTAS one uses O(log, . n) bits for
coding a grid in F. In a similar way only logn /2
bits are used to obtain a linear time approxima-
tion algorithm. More details about the family
of grids, called the family of (a, §8,7)-grids are
given in Section 2 together with two important
properties. Then, in Section 3 we show how
a grid is tested, and finally, in Section 4, we
present the main results.

We will assume that width, height and weight
of each rectangle r € S is between [1,n°], for
some constant ¢c. We argue in [2] that this as-
sumption can be made without loss of generality
with respect to our approximation results.

1 Approximation algorithm

The structure of the approximation algorithm
is given below. The two non-trivial steps,
lines 10 an 11, will be described in detail
in Sections 2 and 3 respectively. The last
step, PACKINTOGRID, is obtained by slightly
modifying the procedure TESTGRID. As input
to the algorithm we will be given a set S of n
rectangles and a real value &’ > 0.

Algorithm GRIDPACK(S,¢")

1. bestVal < oo,
Y e 1
a,B=V1+¢e,v= Vit —1
2. for each 1 <i,j <log, n° do
3. Sij +— 0
4. for each r € § do

5 it < [log, width(r)]

6. j < [log, height(r)]

7. Si,j — Si,j U {T}

8. end

9. for k <+ 1 to n/(*#7) do

10. G + GENERATEGRID(a, 3,7, k)

11. val < TESTGRID(G, S, o, 8,7)

12. if val < bestVal then

13. bestVal < val and bestGrid <+ G
14. end

15. Output PACKINTOGRID(S, bestGrid)

The initialisation is performed on lines 1 to
3. On lines 4-8, the rectangles are partitioned
into groups in such a way that a rectangle
r € S belongs to S;; if and only if the width
of 7 is between a'~! and «f, and the height
of 7 is between a/~! and of. Lines 1-8 ob-
viously run in linear time. Next, a sequence
of grids G are produced in a loop of lines 9-
14. They are the members of the so-called fam-
ily of («, 3,7)-grids which is described in Sec-
tion 2. (It consists of nf(®f7) grids, where
fla,8,7) = (2clog(aBy))/(logalog 5).) The
generated grid is tested and the weight of an
approximative grid packing of S into the grid G
is computed. If the grid packing is better than
the previously tested grids then G is saved as
the best grid tested so far. Finally, when all
grids in the family of («, 3,7)-grids have been
generated and tested a call to PACKINTOGRID
performs a grid packing of S into the best grid
found. This procedure is a simple modification
of the TESTGRID-step.

2 (a,f,7)-grids

The aim of this section is to define the family F
of (a, f,y)-grids and prove two properties about
F. Before the properties can be stated we need
the following definition. A grid Gy is said to
include a grid G4 if every possible set of rect-
angles that can be grid packed into G5 also can
be grid packed into G;. F has the following two
properties.

1. For every grid G there exists a grid G € F
that includes G and whose width and height

is at most a factor (aa _1) times larger
v

than the width and height of G, and
2. #F < nllab),
The definition of an («,,7)-grid is some-

what complicated, therefore we choose to de-
scribe this step by step.

156

A trivial observation is that two grid-packings
are equivalent if the one can be transformed
to the other by exchanging the order of rows
and/or the columns. Hence we may assume that
the columns are ordered with respect to decreas-
ing width from left to right and that the rows are
ordered with respect to decreasing height from
top to bottom. This ordering will be assumed
throughout the paper.

Counsider an arbitrary grid G and let a be a
real constant greater than 1. An a-restricted
grid is a grid where the width and height of each
cell in the grid is an integral power of « (multiple
of o' for some integer 7).

Let G be a a-restricted grid. If the num-
ber of columns/rows of each size is an inte-
gral power of 8 then G is a («,[3)-restricted
grid. The columns/rows in an a-restricted grid
of width/height o are said to have column/row
size i. A grid G is said to be y-monotone if the
number of columns (rows) of size ¢ is at most a
factor v > 1 times smaller than the number of
columns (rows) of size i + 1 for every i.

The following lemma is proven in [2], hence,
F is shown to have Property 1.

Lemma 2 For any grid G there exists a +-
monotone («, B)-restricted grid G (an (a, 8,7)-
grid for short) that includes G and whose width

aBy

and height is at most a factor (Mi1

than the width and height of G.

) greater

Most often we do not need the actual grid,
instead we are interested in the number of cells
in the grid of a certain size. That is, the grid G is
represented by a [1..log, n¢, 1..1og, n] integer
matrix, where G[i, j] stores the number of cells
in G of width o' and, height /. We call this a
matrix representation of a grid.

Now we turn our attention to the second prop-
erty for the family F of («, 3,7)-grids, i.e., the
number of grids that are members of F is at
most n/(®87) Assume that we are given a
member f € F and that f has ¢; columns of
size i, 1 < ¢ < log, n¢, and r; rows of size j,
1 < j < log,n®. Recall that r; and ¢; are
integral powers of #. The idea of the scheme
is as follows. The bit string, denoted S, is
built incrementally. Consider a generic step of
the algorithm. Assume that the bit string, de-
noted S;i1 has been built for all the row sizes
greater than j and that the number of rows

of size (j + 1) is B#Eows) Tnitially Slog,, ne
is the empty string and #Rows = 0. Con-
sider the row size j. We will have two cases,
either r; < (B#EOWs/y) or r; > (B#EOwS /).
In the first case, add ‘1’ to Sj;1 to obtain S;.
In the latter case, when r; > (B#H°ws /), add
(#Rows — (loggrj — logg 7)) zeros followed by
a ‘1’ to Sj41 to obtain S;. Decrease the value
of j and continue the process until ;7 = 0, and
hence, Sop = S.

The same approach is used to generate the
columns, hence we obtain the following obser-
vation that proves Property 2.

Observation 3 S has length 2(log,n°(1 +
logs) +logg n).

We obtain the following corollary:

Corollary 4 Given a bit string B of length
2(log,, n°(1 + logs) + loggn) one can in time
O(log® n) construct the unique matrix repre-
sentation of the corresponding («, 8,)-grid, or
decide that there is no corresponding («, 3,7)-
grid.

3 Testing a grid

In the previous section we showed a sim-
ple method to generate all possible (a,,7)-
restricted grids. For the approximation algo-
rithm, shown in Section 1, to be efficient we need
a way to pack a maximal number of rectangles
of § into the grid. As input we are given a ma-
trix representation of an (a,3,7)-grid G, and
a set S of n rectangles partitioned into groups
S;,; depending on their width and height. Let
Cp,q denote the number of cells in G that have
width o and height a?. We will give an ex-
act algorithm for the problem by reformulating
it as a max-flow problem. The problem could
also be solved by reformulating it as a matching
problem but in the next section we will show
that the max-flow formulation can be extended
to the weighted case. The max-flow problem is
as follows.

Given a directed graph G(V, E) with capacity
function u(e) for each edge e in E. Find the
maximum flow f through G.

The flow network Fsg corresponding to a
grid G and a set of rectangles S contains four
levels, numbered from top-to-bottom, and will
be constructed level-by-level.

Level 1. Contains the source node v,

157

Level 2. Contains log? n¢ nodes. A node)

g
at level 2 represents the group S; ;. For each
node v

0,7
1/57 j). The capacity of this edge is equal to the

number of rectangles in S that belongs to S ;.

Level 3. Also contains log? n¢ nodes. A node

Vi

For each node v,

node 1/() to node 1/,(,,3 if and only if p > i and
q>J (or g > i and p > j), i.e., if a rectangle
in S; ; can be packed into a cell in C, ;. All the
edges from level 2 to level 3 have capacity n.
Level 4. Contains the sink »*). For every

node 1/,(,3 on level 3 there is a directed edge

there is a directed edge from v to

on level 3 represents the set of cells in Cp 4.

()

there is a directed edge from

from %) to v with capacity equal to the
number of cells in G that belongs to Cp, 4.

The following results are straight-forward.

Observation 5 The maximal grid packing of S
into G has size k if and only if the max flow in
the flow network is k.

In 1998 Goldberg and Rao [4] presented an
algorithm for the maximum flow problem with
running time O(n*/3mlog(n®/m)logU). If we
apply their algorithm to the flow network we
obtain the following lemma followed by the first
grid packing theorem.

Lemma 6 Given a matrix representation of an
(a, B,7v)-grid G and a set S of n rectangles par-
titioned into the groups S; ; w.r.t. their width
and height. (1) The size of an optimal packing of
S in G can be computed in time O(log” n). (2)
An optimal packing can be computed in time
O(log” n + k), where k is the number of rectan-
gles in a grid packing of S in G.

Theorem 7 Given a set of rectangles S and
an € > 0, algorithm GRIDPACK produces a
grid packing whose area is most (1 + ¢) times
larger than a minimum area grid packing of &
in time O(nf V1+9) 10g'®/3 n 4 n), where f(x) =
2clog(x/(\f 1)))

log? x

Even though the expression for the running
time in the above theorem looks somewhat com-
plicated it is not hard to see that by choosing
the value of € appropriately we obtain that, al-
gorithm GRIDPACK is a PTAS for the MAGP-
problem, and if € is set to be a large con-
stant GRIDPACK produces a grid packing that is

within a constant factor of the optimal in linear
time. Note also that the approximation algo-
rithm easily can be generalised to d dimensions.

4 Results

The approximation algorithm presented above
can be extended and generalised to variants
of the basic grid packing problem by perform-
ing some small modifications to the procedure
TESTGRID. We obtain the following corollary.

Corollary 8 Algorithm GRIDPACK is a 7-
approximation al/gontbm with time complexity
O(nf V1+9) 10g/3 1 4 n), where:
- 7 = (1+¢) for the problems MAKGP, MAG-
PAR and MDGP,
- 7 = (1 —¢) for the MWP-problem, and
- 7=((|2(1+¢)])?) for the MNWP-problem

Finally we consider the hardness of three vari-
ants of the MAGP-problem.

Theorem 9 (1) MNWP cannot be approxi-
mated within a factor of 3/2 — ¢ for any € > 0,
unless P = NP. (2) The MAGPAR-problem
and the MWP-problem are NP-hard.

5 Acknowledgements

We thank Esther and Glenn Jennings for intro-
ducing us to the problem. We would also like
to thank Bernd Géartner for pointing us to “The
table layout problem” [1, 3, 5, 6].

References

[1] R.J. Anderson and S. Sobti. The Table Layout
Problem. Proc. of SoCG, 1999.

[2] M. Andersson, J. Gudmundsson and C. Lev-
copoulos. Tech rep., Dept. of Comp. Sci., Lund
University, 2002.

[3] R.J. Beach. Setting tables and illustrations
with style. PhD thesis, Dept. of computer sci-
ence, University of Waterloo, Canada, 1985.

[4] A. V. Goldberg and S. Rao. Beyond the flow
decomposition barrier. Journal of the ACM,
45(5):783-797, 1998.

[6] K. Shin, K. Kobayashi and A. Suzuki. TAFEL
MUSIK, formatting algorithm of tables. Proc.
of Principles of Document Processing, 1994.

[6] X. Wang and D. Wood. Tabular formatting
problems. Proc. of Principles of Document Pro-
cessing, 1996.

158

