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The art gallery problem asks how many guards are sufficient to see every point of the interior of
an n-vertex simple polygon. The guard is a stationary point who can see any point that can be
connected to it with a line segment within the polygon. A collection of guards S = {g1,...,gx } is
said to cover the polygon P if every point « € P can be seen by some guard g € S.

For a guard set S we define the wisibility graph VG(S) as follows: the vertex set is S and
two vertices vy, v9 are adjacent if the line segment with endpoints v; and v, is a subset of P, i.e.
10z C P. Next, the guard set S is said to be cooperative (connected) if the graph VG(S) is
connected.

The concept of cooperative guards was proposed by Liaw, Huang and Lee [5]. They established
that The Minimum Cooperative Guards Problem for simple polygons is NP-hard, but for spiral and
2-spiral polygons this problem can be solved in linear time [5]. For k-spiral polygons the minimum
number of cooperative guards is at most N, the total number of reflex vertices in the k-spiral
polygon [3]. The cooperative guards problem for general simple polygons has been completely
settled by Hernandez-Pefialver, proving that | %] — 1 cooperative guards are always sufficient and
occasionally necessary to guard a polygon of n vertices [4].

The diagonal graph Gp of any triangulation of an n-vertex polygon P is a graph obtained only
from n — 3 internal diagonals of the triangulation: the edges correspond to the diagonals and the
vertices correspond to all endpoints of diagonals. Herein we discuss the relation between a vertex
cover of a diagonal graph and a connected vertex guard set in a polygon (guards are restricted to
be located only at the vertices of the polygon): we show that any set S is a vertex cover of Gp if
and only if S forms a connected vertex guard set in P.

1 Diagonal graphs

Lemma 1.1 Let P, T and Gp be a simple n-vertex polygon (n > 4), its arbitrary triangulation,
and the diagonal graph of triangulation T, respectively. Then Gp is connected. (|

Let us recall that a graph is outerplanar if it can be embedded in the plane so that all of its
vertices lie on the exterior face.

Lemma 1.2 Let m be the number of edges of a connected outerplanar graph G. Then there exists
a vertex cover of cardinality at most | ™ | O

Let P be a polygon of n vertices. Any of its diagonal graphs has n — 3 edges, and, of course,
it is outerplanar. By Lemma 1.1 and Lemma 1.2 we get the following:

Corollary 1.3 Let Gp be the diagonal graph of a triangulation of an n-vertex polygon. Then
there exists a vertex cover of cardinality at most L”T_QJ O
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2 Vertex cover vs. connected guard set

A triangulation graph G of an n-vertex simple polygon P is a graph obtained by triangulation P
with internal diagonals between vertices: the vertices of G correspond to the n vertices of P, and
the edges correspond to the n edges of P and n — 3 diagonals.

A wvertex guard in Gr is a single vertex of Gr. A set of guards S = {g1,...,9x} is said to
dominate G if every triangular face of Gr has at least one of its vertices assigned as a guard
(€ S). Finally, the collection of guards S = {g1,...,9xr} is said to be connected if for any two
guards g;,g; € S there exists a path p = (gs,p1,...,m,9;) in triangulation graph G that all
pt € S, fort =1,...,1. Guards in graph Gt are called combinatorial connected guards to distin-
guish them from the geometric connected guards introduced earlier. The reason for introducing
triangulation graphs is that a proof of sufficiency of a certain number of combinatorial connected
guards establishes the sufficiency of the same number of geometric connected guards in a polygon.

Lemma 2.1 [4] Let P be a simple polygon, and Gy be one of its triangulation graphs. If Gy can
be dominated by k combinatorial connected guards, then P can be covered by k geometric connected
vertex guards. |

The main use of diagonal graphs is the following result.

Theorem 2.2 Let T, Gy, Gp be any triangulation of a simple polygon, a triangulation graph of
T and the diagonal graph of T, respectively. If C = {g1,...,gr} is a vertex cover of graph Gp,
then C is a connected guard set in G. O

We note in passing that Theorem 2.2 holds also for iff:

Theorem 2.3 Let T, Gr, Gp be any triangulation of a simple polygon, a triangulation graph of
T and the diagonal graph of T', respectively. A connected guard set S in G is a vertex cover of
diagonal graph Gp. O

Corollary 1.3 and Theorem 2.2 lead immediately to the following:

Corollary 2.4 L”szj connected guards are sometimes necessary and always sufficient to cover
any polygon of n vertices. (I

3 Final remarks

The idea of the proof of the sufficiency of L”T’Zj—bound leads immediately to a linear approximation
algorithm AD for finding any connected guard set for a polygon P (guards will be located at
vertices):

(1) triangulate P; (in O(n) steps [2])
(2) find any minimum vertex cover of the diagonal graph Gp. (in O(n) steps [8])

Nevertheless, this algorithm can be arbitrarily bad.
Let Sap(P) and Sopr(P) denote the number of connected guards obtained by algorithm AD,
and the minimal number of connected guards that cover P, respectively. It is natural to ask about:

lim max M
n—oo g, Sopr(P)’

that is how the obtained result can differ from the optimal solution.
Consider a polygon P of 4k + 2 vertices, its triangulation T', and its corresponding diagonal
graph G p shown in Fig. 1. It is clear, that any minimal vertex cover of Gp is of cardinality k + 1,
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Fig. 1. A star polygon of 4k + 2 vertices that requires only 2 connected vertex guards, (a) its
triangulation T', (b) the minimum vertex cover of Gp is of cardinality k + 1.

and as P is a star polygon with one of its vertices in the kernel, it can be guarded only by two
connected vertex guards. Thus:

lim max 7SAD(GD) =
n—oo g,  Sopr(P)

We recall that The Minimum Connected Guard Problem for simple polygons was shown to be

NP-hard [5].
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