Sweeping an Arrangement of Quadrics in 3D *

Bernard Mourrain Jean-Pierre Técourt Monique Teillaud

Abstract

1 Introduction

Arrangements are the underlying structure of many applications, especially in robot motion plan-
ning. They have been extensively studied in the literature (see [Hal97] for a survey).

The arrangement of a set of objects S in R? is the decomposition of R? into cells of dimensions
0,1,...,d induced by S. The topology of an arrangement is often quite complex, and the descrip-
tion of a given cell can be of non-constant size. Therefore, vertical decompositions are often used,
allowing to partition the space into simpler constant sized cells (for a complete bibliography, we
refer to [SHO02]). A sweep-based algorithm was followed in [dBGH96, SH02] to produce a vertical
decomposition of an arrangements of triangles in R3.

The manipulation of algebraic surfaces plays an important role in solid modeling. Geismann
et al. presented two methods to compute a given cell in an arrangement of quadrics [GHS01]. The
first method uses projection techniques based on resultants, while the second method uses solid
modeling techniques.

We propose here a sweeping algorithm to compute effectively the arrangement of a set of
quadrics in R3.

2 Overview

Let S = {Q;,i =1,...,n} be aset of n quadrics. We denote by (); both a quadric and its equation.
Let V@; be the gradient vector of ();. We assume that no quadric is a product of planes.

We choose a generic direction (say z) and we sweep S by a plane in this direction. Every
z-section of the arrangement is an arrangement of conics in the plane. We initialize the sweep at
some chosen value of z. Let us consider the different types of events where the topology of the
z-section is changing during the sweep.

a) Qi, =0,0,(Q4) =0,09,(Q,,) = 0: horizontal tangent plane.

More precisely, depending on the signature of @;,, three events can appear:

i (3,1), (1,3): . D)
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i (2,2):

i, (2,1), (1,2): ) . D)

b) @i, =0,Qi, = 0,(VQi;, AVQi,). = 0: horizontal tangent for the intersection curve between
Qh and Qiz-

~
~
~

We do not consider degenerate cases such as intersections of more than three quadrics at the same
point.

3 From cells to “trapezoids”

The first idea consists in characterizing each 2-dimensional cell of the arrangement of conics in
a section by sign conditions. For one or two conics, the sign conditions are determined by the
equations of the quadrics and the equations of lines depending on the quadrics. See [MTT02] for
more details.

In the case when cells are defined by more than 3 quadrics, the following picture shows that
two different cells (the two gray cells) can be characterized by exactly the same sign conditions.

To solve this issue, we choose to compute a “trapezoidal” decomposition of the arrangement
in the z-section, as explained in the following paragraph.

Trapezoids. We draw segments parallel to the y-axis. This is done in a very similar way as done
usually for the trapezoidal map in the case of a planar arrangement of line segments. A vertical
segment will be drawn through:

e intersection points between two conics
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e points where the tangent to the conic is parallel to the y-axis.

We obtain “trapezoids” of constant size description: the boundary of each trapezoid consists into
two vertical walls, a ceiling and a floor. Both the ceiling and the floor are conic arcs.

Deciding whether a point lies in a trapezoid, reduces to compare the z-coordinates of the point
and the walls and then for a fixed z, to compute the sign of the conics defining the ceiling and the
floor or the sign of rational expressions formed on their coefficients.

The drawback is that maintaining the vertical decomposition introduces additional events that
have no meaning in the 3D arrangement, but the big advantage of this decomposition is that
all events described in Section 2, except events of type (a.i), can be easily detected during the
algorithm: each time a new trapezoid is created, we compute the z for which it disappears. All
the events of Section 2 are some of these events.

When a trapezoid disappears, the 2D arrangement needs to be updated: the trapezoid is
replaced by other trapezoids, and its neighbors are modified, too. Enumerating the different types
of trapezoids is quite easy, as well as the way they need to be updated, depending on the type of
event that cause them to disappear. Details are omitted in this abstract.

Ouly events of type (a.i) will be precomputed and sorted. When such an event is encountered,
a point location has to be performed. The decomposition into trapezoids allows to locate such a
point easily in practice, either in a naive way by testing all the trapezoids, or by walking along a
line.

3D decomposition. Another advantage of the trapezoidal decomposition is that it induces a
decomposition of the arrangement of quadrics in R® into simple regions, that are the regions
swept by the trapezoids. The decomposition we get with our method is not quite the same as the
so-called vertical decomposition [SA95].

We skip the discussion on the combinatorial complexity in this abstract. The data structures
used are roughly similar to the ones described in [SH02]. We chose to focus on algebraic aspects.

4 Algebraic aspects

The events of type (a.i) in Section 2 are precomputed by solving algebraic equations of degree 2,
and they are sorted.

Location in the trapezoidal map. As written above, deciding whether a point lies in a
trapezoid reduces to compute signs of rational expressions in the coefficients of the quadrics, and
to compare the z-coordinates of the point and the vertical walls. So, the point location for an
event of type (a.i) performs such evaluations of signs at points whose coordinates belong to an
algebraic extension of degree at most 2, and comparisons of degree 2 and 4 algebraic numbers.

Detecting and comparing new events. A trapezoid is defined by two vertical walls, a floor
and a ceiling. To predict how a trapezoid will disappear, we need to compute when its floor and
its ceiling collide, or when its vertical walls coincide.

The worst case, in terms of algebraic degree, is achieved by the events when the z-coordinate
of the intersection between two conics coincides with the z-coordinate of the intersection between
two other conics. This leads to the computation of points of intersection of 4 quadrics in a space of
dimension 4, whose coordinates lie in an algebraic extension of degree at most 16. The coordinates
of the intersection points are rational functions of these algebraic numbers.
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In order to sort the events according to the z-direction, we have to determine the sign of the
difference of two algebraic numbers. In the worst case, we are interested in algebraic numbers of
degree 16 belonging to independent algebraic extensions of the initial field. So, the difference is in
an algebraic extension of degree 256.

Preliminary experimental results. These computations can be done in practice with the
SYNAPS library!. Let us consider the arrangement of the following 3 quadrics:

27227 + 96y + 1922 + 32y> + 64ya2 + 6427 — 571.22 — 142.4y — 252.82 4 323.64 = 0
12827 + 1152y% — 1024y 2z + 2562° — 144z — 886.4y + 358.42 + 220.12 = 0
6422 + 25632 + 12822 — 642 — 288y — 160z + 143 =0

We have considered the events corresponding to a change in the topology of the cross section (See

Section 2). The events corresponding to changes in the trapezoidal map are not computed in these

preliminary tests. An approximation of the events (a), (b), (c) is computed with the following

running times on a PC workstation (1686, 2.2 GHz, 256 M):

(a) 3 x 2 real solutions (0.01s).

(b) 3 x 8 = 24 complex solutions and 6 are real (0.06s).

(c) 8 complex solutions and 2 real (0.02s).

Then, the events are sorted according to the z-coordinate as follows:
(a) [0.825000,0.700000,0.287500]
(a) [0.562500,0.544649,0.359835]
(a) [0.500000,0.562500,0.448223]
(b) [0.498552,0.561349,0.448234]
(b) [0.687835,0.570199,0.508852]
(b) [0.677133,0.617014,0.519616]
(c) [0.676862,0.612181,0.521687]
(c) [0.638126,0.657542,0.685372]
(b) [0.534420,0.666721,0.719519]
(b) [0.662072,0.686211,0.723158]
(b) [0.627783,0.558545,0.776837]
(a) [0.500000,0.562500,0.801777]
(a) [0.562500,0.780351,0.890165]
(a) [0.675000,0.300000,0.912500]
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