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Abstract

We study the problem of tiling a polyomino P with squares such that every tile S has a
nonempty intersection with the boundary of P. We are especially interested in tilings with a
minimum number of squares and in efficient algorithms to find such tilings.

1 Introduction

Our setting in the present paper will be the plane R?. For a subset M C R? we denote by int(M)
the interior of M, by bd(M) the boundary of M and by conv(M) the convex hull of M. We will
consider subsets of R* which are usually called polyominoes [3].

Definition 1.1 The set € of cells in the plane is defined as
¢ = {conv({(k,1), (k+ 1,0),(k, 1+ 1), (k+1,I+1)}) : k,l€Z}

Definition 1.2 P C R? is called polyomino if and only if there exists a finite nonempty set B8 C &
such that P = UcepC and int(P) is connected.

Definition 1.3 A rectangle R C R? is called a cell rectangle if and only if R is a polyomino. A
cell rectangle which is a square is called a cell square.

Definition 1.4 Let P be a polyomino. A set T of cell squares is called a boundary touching tiling
or BTT of P if and only if

1. P =UgexS
2. VSl,Sg €T (Sl 7é Sy = int(Sl) n int(Sz) = @)
3.VSe% (Sﬁbd(P) # @)

The tiling of bounded subsets M C R? with squares that touch the boundary of M was to
our knowledge first studied in [4]. However the definition of a BTT given there allows tilings with
squares of arbitrary side length and tilings with an infinite number of squares. Then it is shown,
that every open set M C R? such that M is a homeomorph of an open disk or a homeomorph of
an open disk with one hole admits a (possibly infinite) tiling with squares that touch the boundary
of M. On the other hand there exists an open set M C R? such that M is a homeomorph of an
open disk with two holes which can not be tiled with squares that touch the boundary of M.

We will restrict ourselves to simple polyominoes, which are homeomorphs of a closed disk, and
we use the definition of a BTT given above. With the same arguments as used in [4] one can show,
that every simple polyomino admits a BTT. Now by defintion a BTT is finite and we can ask for
BTT-s with a minimum number of tiles for a given simple polyomino.

Definition 1.5 Let P be a simple polyomino. u(P) = min({|%|: ¥ is a BTT of P})
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In the literature one finds results concerning the tiling of cell rectangles with a finite number
of squares under various conditions. So for example: the number of squares has to be as small as
possible [2], the squares of the tiling have to be pairwise incongruent [1]. The latter tilings are
called perfect.

2 Some properties of boundary touching tilings

First we note, that for a given polyomino there need not be a unique BTT. Consider for example
the rectangle with side lengths 2 and 8 displayed in figure 1. The integers inside the squares denote
their side lengths.

Figure 1: Different BTT-s for a given polyomino.

Definition 2.1 Let P be a simple polyomino. A straight line segment C' with endpoints  and
y is called a cut through P if and only if C N bd(P) = {z,y} and C dissects P into two simple
polyominoes P, and P», thatis PP UP, =P and PPN P, =C.

Lemma 2.1 Let P be a simple polyomino and ¥ a BTT of P with |T| > 1. Then there exists a
cut C through P such that C' C Ugezbd(S).

This lemma can be proved by contradiction. We suppose there is no such cut C'. Then we
can construct a simple closed curve H such that H C int(P) and H C Ugegbd(S). But this
contradicts the fact that every S € ¥ touches the boundary of P.

Corollary 2.1 Let R be a cell rectangle and ¥ a BTT of R with |T] > 1. Then there exist at
least two distinct squares S, 52 € ¥ such that the side length of S; equals the side length of S
and is minimal among the side lengths of the squares in ¥.

Corollary 2.2 For a cell rectangle a BTT with more than one tile can never be a perfect tiling.

In the next section we want to use the cut property of a BTT to give an algorithm, which for
some subclass of polyominoes admits a rather efficient computation of BTT-s with the mimimum
number of tiles. Such BTT-s we will call minimum BTT-s for short.

3 Boundary touching tilings with the minimum number of
tiles

Our idea for an algorithm to compute a minimum BTT for a given simple polyomino P is rather
straight forward. We try every possible cut through P. From a cut C' we get the two subpoly-
ominoes Py (C) and P»(C'). We compute a minimum BTT %, (C) for P;(C) and a minimum BTT
To(C) for Py(C). Then T(C) = %1 (C) U ZT2(C) is a BTT for P. To obtain a minimum BTT for
P we only have to search for a cut C through P such that |T(C)| is minimum.

However if the minimum BTT-s for the subpolyominoes are computed by a recursive call to
the same algorithm we will end up with a very slow algorithm. Unfortunately in general we were
not able to overcome this difficulty. Only for a very restricted subclass of simple polyominoes we
could do better.
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Definition 3.1 A polyomino P is called orthogonally convex if and only if for every horizontal
or vertical straight line S the set SN P is empty or a straight line segment.

Now when we have an orthogonally convex polyomino P consisting of n cells, the number of
possible subpolyominoes resulting from cuts is bounded by a polynomial in n. Therefore we can
apply the dynamic programming technique and obtain an algorithm the running time of which is
bounded by a polynomial in n too.

4 Rectangles

In this section we present some results concerning cell rectangles, because on the one hand, as has
been already mentioned in the introduction, there has been done quiet a lot of research on tiling
rectangles by squares. On the other hand we think these results are interesting in themselves and
leave to us some open questions.

First cell rectangles are special orthogonally convex polyominoes. So we can apply the algo-
rithm given above to compute minimum BTT-s. But we can tune the algorithm so that we end
up with a running time in O(n?) where n is the number of cells the rectangle consists of.

Definition 4.1 Let a and b be positive integers such that a < b. We set p(a,b) = p(R) where R
is a cell rectangle with side lengths a and b.

The function p(-,-) shows some kind of periodicity:

Lemma 4.1 Let a and b be positive integers such that a| §|4+2a < b. Then u(a,b) = p(a,b—a)+1.
Remark 4.1 The equation in the above lemma does not hold in general. For example we have
1(17,19) = 11 but u(17,36) = 10.

Another interesting problem is to give bounds for the function u(-,-). So far we were only
successful in giving a lower bound. We employ a technique which has been already used in [1] and
[2]. We are given a rectangle R with side lengths a and b such that @ < b and a and b are relatively
prime. For any BTT ¥ of R with |T| = m we construct a graph G(¥) with m edges. It is known
that the number of spanning trees of G(¥) is bounded from below by b. On the other hand we
were able to show that the number of spanning trees of G(¥) is at most the mth Fibonacci number
F,,,. Hence we have b < F},, or with other words a logarithmic lower bound on m in terms of b.

5 Concluding remarks

There remain some unsettled questions: Does an efficient algorithm exist, which given a simple
polyomino P computes a minimum BTT for P? What about an upper bound on the function
u(+,+)? The work done in [2] might indicate, that there are connections to number theory. Finally
we remark that the condition that every square in the tiling has to touch the boundary is really a
restriction with respect to the number of squares in a minimum tiling. Consider for example the
cell rectangle R with side lengths 11 and 13. A minimum BTT of R contains 8 squares, but we
can tile R with 6 cell squares. Can we say something about how many more squares we need due
to the condition of boundary touching?
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