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Abstract

It is proved that if S is a set of n disjoint spherical sites in R®, of at most k different radii,
then the cell owned by a smallest site has fewer than 3*~'n different faces.

It follows that the Voronoi diagram of S has complexity O(n?), assuming a bound on the
number of different radii among the sites in S.

It is also shown that without the bound on the number of different radii, the cell owned
by a point site can have complexity Q(n?).

1 Voronoi diagrams

This paper considers the Voronoi diagrams of spherical sites in R?. For a general survey of Voronoi
diagrams see, e.g., [1]. The current state of knowledge about the complexity of Voronoi diagrams,
in 3 dimensions, is scanty. It is known to be O(n?) for n point sites, and this bound is tight.
When the sites are straight lines, the complexity is known to be o(n?*€) for all € > 0, granted that
either the distance function is polyhedral, based on a fixed convex polyhedron [2], or the distance
is Euclidean but the lines are in O(1) different directions [3].

The so-called sites will be a set S of n disjoint closed balls in R®. The Voronoi diagram of S
is the set of points in R® which have more than one site closest to them. The Voronoi diagram is
a 2-dimensional complex with faces, edges, and vertices. The faces are connected subsets of what
we call bisectors.

1.1 Definition. Let B and B’ be disjoint spherical sites (point sites are allowed), Then the
(B, B')-bisector is the Voronoi diagram of {B, B'}, that is, the set of points equidistant from B
and B'.

1.2 Lemma. If B and B’ are spherical sites with radii v,7' respectively, where v > 1’ > 0, then
the bisector of B and B' is a plane if r = r' and a (single sheet of a 2-sheeted) hyperboloid of
revolution, whose axis is the line joining their centres, if r > r'.

In either case, the bisector partitions R? into two regions, and that containing B' is convez.
See Figure 1. O

1.3 Corollary. Suppose that S is a set of disjoint spherical sites whose minimum radius is ry.
Let S’ be the set of spherical sites obtained by replacing every site B in s by a site with same
centre and radius v — ry, where r is the radius of B.

Then Vor(S) = Vor(S'), and the smallest sites in S’ are point sites. O

1.4 Definition. Let B be one of the sites in a set S of disjoint spherical sites. The Voronoi cell
of B consist of all points which are as close, or closer to, B than to any other site in S.
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Figure 1: The bisector is a hyperboloid of revolution.

Clearly, the Voronoi diagram is the union of boundaries of cells of all sites in S.
The complexity of the Voronoi diagram for point sites is known:

1.5 Proposition. If S is a set of n point sites, then Vor(S) has n cells and O(n?) faces, edges,
and vertices. This bound is tight. O

1.6 Lemma. Let C be a collection of sets S of disjoint spherical sites in R3. Let M(n) denote
the mazimum complezity of Vor(S) for all S € C such that |S| = n. Then M(n) is O(n?) if and
only if for every S € C, Vor(S) contains a cell of complezity O(|S|). O

2 Re-inflating deflated sites

It is our aim to show that when S is a set of disjoint spherical sites with at most k distinct radii,
and B is a site of minimum radius in S, then its cell in Vor(S) has at most 3% 1n faces. With k
fixed it can be regarded as having O(n) different faces, and hence its complexity is O(n). This is
enough (Lemma 1.6) to ensure that Vor(S) has complexity O(n?), when the number of different
radii occurring among the sites in S is bounded.

(2.1) Inflating sites. We imagine the sites being ‘inflated’ to their correct size: an increasing
parameter 7 is given, and S(r) is the set of sites with their radius bounded by r. As r increases,
the sites inflate until all have reached their correct radius. We study how the Voronoi diagram
evolves.

2.2 Definition. Let S be a set of n spherical sites with centres ¢; and radii ;. For any r > 0, the
r-bounded version S(r) of S is the set of n sites whose centres are ¢; but whose radii are min(r;, 7).

We can assume (Corollary 1.3) that S contains a point site. For the remainder of this section,
p will denote a point site in S.

2.3 Definition. Suppose that B is a site in S(r). If the corresponding site in S has radius > r
then we say B is expanding, otherwise it is stable.

A face, edge, or vertex of Vor(S(r)) is called stable, transient static, or moving according as
all sites closest to it are stable, all are expanding, or some but not all are expanding, respectively.

2.4 Definition. C(r) will denote the cell owned by p in Vor(S(r)).
2.5 Lemma. C(r) is convex. (Immediate from Lemma 1.2.) O

We consider the evolution of C(r) as 7 increases (up to the maximum radius occurring in S).
C(0) is a convex polyhedron with at most n — 1 faces. As r increases, some of these faces
become curved, and new faces appear and disappear.

2.6 Lemma. The only way a new face can be introduced to C(r) is when a bisector passes through
a stable or transient static vertez of C(r).
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Figure 2: Cell of p has Q(n?) incident edges.

Sketch proof. We must consider all possible ways in which the number of faces of C(r) can
change. We classify them as follows:

(A) Several cases which turn out to be impossible:

(Ai) A face gets separated when two opposite edges touch.
(Aii) A face gets introduced when two bisectors touch.

(Aiii) A face gets introduced when a bisector touches an edge, and the face begins to separate
the edge.

(B) A bisector passes through a moving vertex.
(C) A bisector passes through a transient static vertex.
(D) A bisector passes through a stable vertex.
In case (B) a face disappears, and cases (C) and (D) are as predicted. O
2.7 Corollary. C(r) has at most 3*~! faces.
Sketch proof. Let

O=ri<re<...<rg

be the different radii occurring among the sites in .S. Whenever C(r) acquires a new face, a vertex
was lost under case (C) or (D). Suppose rs < r < r441. If case (D) applied, then that vertex
existed in C(ry), and we can assume by induction that there are at most 2 * 3% vertices in C(r;).
If the vertex did not exist in C(rs), then the vertex must have been introduced at some time r’,
rs < r' < r,in an event of type (B). But then a face was lost from C(r'), which can be offset
against the gain of a new face by C(r) through a type (C) event. O

3 The bound on number of radii is essential

Let p be a point site located at (0,0,0). Let H be the unit sphere centred at (0,0,1). H touches
p. Place n balls B; centred on the z-axis at (1/27,0,0) and tangent to H: they are disjoint. Place
n point sites p; around the circle z = 0,y* + 22 = 4. The points p, p; and the balls B; form a set
S of 2n + 1 sites.

The circle E : x = 0,32 + 2?2 = 1 is a degenerate edge where the cell of p in Vor(S) meets
those of the p; and the Bj.

Slightly expand the sites B;, and displace the point sites p; slightly towards p. The effect is to
replace E by n — 1 circles close to E, and the point sites p; split these n — 1 circles into n edges
each. The cell of p has more than n(n — 1) incident edges. The idea is illustrated in Figure 2.
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