Parametric Voxel Geometry Control for
Digital Morphogenesis

Thomas Fischer
Spatial Information Architecture Laboratory
Royal Melbourne Institute of Technology
Melbourne, Australia
sdtom@polyu. edu. hk

Torben Fischer
Mathematische Fakultét
Georg-August-Universitdt Gottingen
Gottingen, Germany
torben.fischer@stud.uni-goettingen.de

1 Abstract

We discuss the extension of an experimental 3D voxel-automata system for generative (evolution-
ary developmental) design with means for parametric geometry control on the scale of single voxel
units. The objective of this extension is to allow the automata system to support the generation
of free form. Being the result of a longer-term interdisciplinary software development project,
the voxel automata system allows simulations of three-dimensional, computation-universal cellu-
lar structures and behaviours based on decentralised, massively parallel, programmable units. It
represents a kit of parts in which virtual form, programme and data structure are fused. From
this top-down perspective we demonstrate a number of geometric operations we have identified
and show some early results. We also give an outlook into more challenging future developments.

2 Zellkalkul

The software is named Zellkalkil in reference to Konrad Zuse’s Plankalkil and his early reflec-
tions on spatial calculation. It is designed to facilitate explorations of tempo-spatial mechanisms
of morphogenesis in cellular (voxel-based) architectural and design contexts such as theoretical
architectural design research [3] as well as in generative design teaching [2]. Zellkalkil differs from
classic cellular automata systems in terms of its programming logic as well as geometrically. Its
programming logic supports non-uniform high level coding. That is, different cells can be equipped
with individual code scripts. The scripting language used is an extended version of ECMAScript.
Besides its general control structures and data types, which are commonly known from other EC-
MAScript dialects such as JavaScript, our system also provides purpose-centered functions and
objects to support intercellular communication and developmental actions. These are partially
inspired by biological epigenetic processes (splitting, differentiating, moving, dying) and partially
intended to support generic actions (evaluating fixed identities, exchanging and modifying code
scripts etc.). The cellular voxel units are based on rhombo-dodecahedral geometry in close-packing
arrangement.

We prefer this topology, derived from face-centered cubic close-packing of spheres, over the
square or cubic arrangement of common 2D or 3D cellular automata systems since it allows equal
distances and relationships between all neighbouring cells (as discussed and exemplified in [4]).
Moreover, it bears a close resemblance to many natural cell tissues as identified and illustrated
early by [6] (see left of figure 1). The arrangement is equivalent to the isotropic vector matriz,
which, used for example to form so-called octet trusses, is of special relevance to architecture
and structural engineering (see [5], p.138 ff.). At the time of this writing, Zellkalkil supports 3D
rendering of this data structure in form of “solid” spheres and as rhombic dodecahedra. Vector

35

FPhy-totomie Tafl

__w.rw_ e (owe e pule

e 7278 TS

PR SO \
2. B

Fe T e T s
|
7z, |

\¢

Figure 1: Rhombo-dodecahedral cell geometry by [6] (left) and octet truss by [5] (right)

representation similar to the illustration on the right of figure 1 is planned.

3 Towards Supporting Free Form

We believe that Zellkalkil's geometry is more flexible than traditional square or cubic cellular
automata systems. However, from an architectural design viewpoint, this current spatial/cellular
automata structure still shows a particular shortcoming with respect to its formal expressive
capabilities. Geometrically, generated tissues are largely restrained to the system’s homogeneously
close-packed lattice structure and generate “jagged” forms only. Support of forms with smooth
surfaces, straight edges and so forth (or architecturally speaking: free form) is being developed at
this point and it is the purpose of this paper to explore possible solution strategies. Our interest is
to complement customary surface and solid modelling techniques with a different operational mode
that embraces developmental morphogenesis in form finding. Approaches that could in principle
qualify to allow the generation of free forms in such a way include:

1. Using large numbers of automata at a high resolution to approximate smooth 3D shapes. One
disadvantage of this approach is that smooth surfaces are not achieved, only approximated at
the cost of exponentially increasing memory consumption during shape generation. Formal
expression is moreover achieved primarily by means of additive composition and not by
parametric control of geometric relations. The usefulness of both parametric design principles
in combination has been discussed by [7].

2. “Skinning” of cell assemblies using curve fitting algorithms.

3. “Skinning” using cell centre points or cell attributes to control skin geometry, e.g. mapping
cell location or other cell-related data onto free curve control-points.

4. Mapping of data generated in Zellkalkil's automata structure onto secondary output ge-
ometries. This and the above two strategies however contradict the software’s intention to
provide a single unified geometric and data structure.

5. Parametric position control of cell polygon vertices. We will discuss this approach in most
of the remaining part of this paper.

6. Parametric cell sizes control. This appears to a highly interesting future extension. We have
however not yet been able to identify suitable operations and constraints for this approach
(see section 5.2).

36

7. Changing the distances between cell centres, i.e substituting the isotropic vector matrix by
an “anisotropic vector matrix”. This approach is a combination of the above two approaches
in which tissues are represented in form of vector trusses instead of as “solid” cells.

Our first approach towards parametric manipulation of the fourteen cell vertices involves the
following initial steps. First of all, the rhombic cell faces are triangulated in order to allow vertices
to move individually without affecting other vertex positions of the same cell while continuing to
allow tissues to remain close-packed without void or overlapping spaces. This triangulation is also
useful in facilitating the creation of triangle-based output file formats such as STL, which is useful
in producing stereo-lithographic rapid prototype models of generated form. For this purpose,
rhombic faces are simply split into two isosceles triangles. As a next step it is necessary to identify
the movement ranges of all vertices — the spaces or domains within which each vertex is allowed
to move while avoiding vertex eversions (which would describe unwanted inverse spaces). This
eversion problem would for instance occur if vertices {1} and {9} on the right of figure 4 were to
change their positions in such a way that {9} will be located above {1}; the cellular space between
both vertices would evert and result in an undefined space. A last step in this preliminary study
requires a suitable control mechanism, which will allow users to move vertices in intuitive ways
using scripting functions. Before discussing these control mechanisms, we will first proceed to
describe the identified vertex ranges.

To allow vertices to move freely without mutual eversion, the ranges must occupy the entire
tissue space while not overlapping and hence themselves allow close packing. The left of figure
4 shows a rhombic dodecahedron with faces numbered using Miller indices (a face identification
system adopted from the field of mineralogy), vertex numbers as used in Zellkalkul and two different
vertex types labeled ’a’ and ’'b’. Vertices between six adjacent cells (labeled ’a’) have octahedral
ranges while vertices between four adjacent cells (labeled ’'b’) have tetrahedral ranges. The side
length (or in Fuller’s terminology: the geodesic vector length) of both geometries is 1 (identical
to cell diameter). Figure 2 shows both types of these platonic shapes (left, octahedra are only
shown half) and (right) their ability to close-pack into cuboctahedral assemblies. The twelve cells
neighbouring the central cell are shown as wire frames in both images. By constraining vertices to
remain within their ranges, this topology guarantees that self-intersecting cell surfaces are avoided.

Figure 2: Cuboctahedral vertex range clusters defined by tetrahedral and octahedral (half shown)
vector matrices

Though the coboctahedral geometry shown in light grey on the right of figure 2 as such does
not allow space-filling close packing, this arrangement still occupies complete tissue spaces due to
partial overlapping. The reason for this overlapping is that ranges are associated with multiple
cells that have vertices in common.

37

4 User Interface

The user interface for vertex position control should be as simple, intuitive and yet as flexible
as possible. For this reason, from the user’s perspective, it does not distinguish between the
two different vertex types ’a’ and 'b’ even though they are internally processed in different ways.
We have decided to use a pressure model that allows users to control the pressure cells bear in
the direction of a given vertex. Figure 3 shows the force vectors with which adjacent cells can
manipulate both types of vertices. An advantage of using a pressure model for vertex position
control is that positions, as in Nature, result relatively from intercellular “negotiation” rather
than by unilaterally controlled, absolute positioning. A problem emerges when trying to move
a vertex between four cells (shown on the left of figure 3) by means of four pressure vectors in
caltrop arrangement (see inside tetrahedral range) since this does not allow the vertex to reach
any point within this range. We have solved this problem by modelling forces as negative pressure
(or: “tension”) rather than as “pressure”.

Figure 3: Force vectors within vertex ranges

The user interface is represented by the script interpreter associated with every cell. For
this purpose we have extended the scripting language specification with functions that allow the
identification of a vertex and a (negatively interpreted) pressure in the format setTension(v, p)
to set a pressure and in the format getTension(v) to acquire a pressure. The pressure parameter
is expressed as a byte value which allows relative pressure control at a resolution of 255 steps per
cell involved in a vertex positioning operation. The neutral default pressure of each vertex, as well
as the “atmospheric” pressure (relevant at tissue edges where vertices have no neighbours), is 127.
With this default value assigned to all vertices internally and to vertices of adjacent cells, a cell
assumes a normal rhombic dodecahedral shape. Other values result in “morphed” variations as
shown in image 5.

5 Outlook

This section discusses further system extensions that, within this ongoing project, are of interest
to us but for which we have not yet been able to identify appropriate algorithms and constraints.
Firstly, the fixed ranges described in the above section appear to be rather limiting compared to
the possibility of dynamic ranges. Secondly, flexible cell sizes would be of great value for generating
geometrically non-uniform tissues and structures.

38

{3

Range 1
Range 9

{9}

Figure 4: Miller face indices, vertex numbers and vertex layers (left), vertex ranges 1 and 9 in
front view (right)

5.1 Dynamic Vertex Ranges

The ranges (vertex domains) discussed above are rigidly defined as platonic tetrahedra and octa-
hedra. With these two types of ranges, vertices are not yet given the maximum possible ranges of
movement as shown in the illustration on the right of figure 4. Given that vertex {9} was to remain
its shown default position, the tetrahedral range of vertex {1} (double hatched) could potentially
be extended by as much as half of the range of vertex {9} (single hatched). The three-dimensional
interrelatedness of all vertices of a cell and its neighbours suggests a solution strategy that is based
on a process of recursive approximation. This approximation should make highly economic use of
physical machine resources. In tissues with large numbers of cells (tissues with up to 20,000 cells
have been generated and larger ones are likely to be generated in the future) such operations are
likely to jeopardize the system’s present interactive responsiveness. It was noted by [1] that in
the translation from idea to a product, it is in this responsiveness, where one of the key values of
parametric design lies.

5.2 Flexible Cell Sizes

Especially from a structural design point of view, a function to generate geometrically non-uniform
structures (cell tissues, octet trusses etc.) is enticing. This will require (again virtual pressure-
based) geometric control algorithms for variable automata diameters and consequently for variable
centre point locations. For such a function, however, a non-uniform 3D close packing system
will not be sufficient (an early investigation into this possibility was presented by [8]). In order
to maintain Zellkalkil's intercellular communication infrastructure, such a system needs to be
constrained in a way that always preserves the number of twelve cell neighbours. An alternative
solution could be based on intercellular communication facilities that are designed for variable
numbers of neighbours. Since this would however result not only in structurally chaotic forms but
also in a highly untidy organisation of the user scripting interface, a solution based on geometric
constraints would be preferable.

6 Acknowledgements

We gratefully acknowledge the support and advice from our colleagues and teachers at the School
of Design at the Hong Kong Polytechnic University, at the Spatial Information Architecture Lab-
oratory at the Royal Melbourne Institute of Technology and at the Faculty of Mathematics at the
University of Géttingen, in particular Prof. John Frazer, Prof. Mark Burry and Timothy Jachna.

39

2 AL Y
¢$6éCoy
o9t é

bbgoo

Figure 5: Array of parametrically morphed cells

References

[1] Mark C. Burry and Zolna Murray. Architectural design based on parametric variation and
associative geometry. In Challenges of the Future. Proceedings of the 15th eCAADe Conference,
pages 1-11, Osterreich Kunst und Kulturverlag, Vienna, Austria, 1997.

[2] Thomas Fischer. Computation-universal voxel automata as material for generative design edu-
cation. In Celestino Soddu et al., editor, The Proceedings of the 5th Conference and Ezhibition
on Generative Art 2002, pages 10.1-1.11, Generative Design Lab, DiAP, Politechnico di Milano
University, Milan, Italy, 2002.

[3] Thomas Fischer, Torben Fischer, and Cristiano Ceccato. Distributed agents for morphologic
and behavioral expression in cellular design systems. In George Proctor, editor, Thresholds.
Proceedings of the 2002 Conference of the Association for Computer Aided Design in Architec-
ture, pages 113-123, Department of Architecture, College of Environmental Design, California
State Polytechnic University, Pomona, Los Angeles, 2002.

[4] John H. Frazer. An Evolutionary Architecture. Architectural Association, London, 1995.

[5] R. Buckminster Fuller. Synergetics. Ezplorations in the Geometry of Thinking. Macmillan
Publishing, New York, 1975.

[6] D. G. Kieser. Phytotomie, oder Grundzige der Anatomie der Pflanzen. Crocker, Jena, 1815.

[7] Branco Kolarevic. Digital morphogenesis and computational architectures. In Jose Ripper
Kos, editor, The Proceedings of SIGraDi2000 - Construindo (n)o espacio digital (constructing
the digital Space), pages 98-103, Facultad de Arquitectura - Universidad Nacional de Mar del
Plata, Rio de Janeiro, Brazil, 2000.

[8] Gary Kong. Cellular automatas and ”stacking balls”. Technical dissertation forming part of
the Diploma of the Architectural Association, London, 1994.

40

