Best Fitting Rectangles

Manuel Abellanas* Ferran Hurtado! Christian Icking? Lihong Mat
Belén Palop® Pedro A. Ramos!

Extended Abstract, January 2003

1 Introduction

We solve an interesting optimization problem motivated by facility location and tolerancing metrol-
ogy, see [5, 6, 9]: What rectangle fits best a given set of points? This problem also arises in dealing
with paper position sensing [3]. Although our problem has some similarities to the problem of the
largest empty rectangle for which no O(nlogn) time solution is known, see [4, 8], for our problem
there is a simple algorithm which runs within that time if the aspect ratio of the rectangle is given
and even in time O(n) if not. Other problems of this kind include the fitting of points by a circle,
see [7], and offset polygon problems, see [1, 2].

2 Notations

We are given a set P of n point sites in the plane. Our task is to determine the rectangle which
is, in some sense, closest to all of them.

As usual, the distance between a point and an extended object means the distance between
the point and the closest point on the object, so the distance between a point p and a rectangle
Ris

d(p, ) = min d(p, q) .

Here, d(p,q) denotes the distance in the underlying metric. Note that by rectangle we mean the
boundary of the rectangle, not the interior. So a point in the interior of a rectangle has a non-zero
distance to the rectangle.
For a certain subset, R, of admitted rectangles, we are looking for the best fitting one, i.e., a
rectangle such that
max d(p, R)

is minimized over all rectangles R of that kind. In other words, the best fitting rectangle R,
fulfills

max d(p, R = min max d(p,R) .

peb (p opt) RER peP (p )
Different kinds of admitted rectangles, R, and different metrics generate different problems to be
solved.

An environment of a rectangle is called a frame. More precisely, the set of points whose

distance to a rectangle R is less or equal to ¢ is called the e-frame of R, for short Fj;. The two
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closed boundaries of Fy; are called the outer and inner e-offsets of R. The e-frame of R is also the
Minkowski sum of R and the unit circle of the underlying metric scaled by €.

In this paper we concentrate on axis-parallel rectangles with or without prescribed aspect
ratio, and we will use the L,-distance as underlying metric, which has axis-parallel squares as
unit circles. Therefore, the outer and inner offsets of a rectangle are also rectangles, see Figure 1.
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Figure 1: The e-frame of R and its edges.

The best fitting rectangle problem is equivalent to looking for the narrowest covering e-frame,
i.e., the frame with the smallest ¢ that covers all sites.

3 Arbitrary aspect ratio

If we do not prescribe a certain aspect ratio of the rectangle then to find the best fitting rectangle
is an easy problem.

Lemma 1 Let R be a rectangle whose e-frame covers P and B the bounding box of P. Then we
have for all p € P

d(p,B) < 2e.

Proof. Let p € P and let r be the point of R closest to p (one of them if there are several); we
know d(p,r) < e.

The (horizontal or vertical) line through p and r intersects B in two points. It is clear that at
least one of the two is not farer than € away from r because otherwise one of the sites on B would
not be covered by the e-frame of R, thus d(r, B) < e.

We can combine the two inequalities and use the triangle inequality to obtain

d(p, B) < d(p,r) +d(r, B) < 2z,
which is our claim. O

Now an optimal solution can be obtained as follows.

e Compute B, the bounding box of P, this will turn out to be the outside of an optimal
e-frame.

e Compute max d(p, B); call this 2e.
pEP

e Let R be the inner e-offset of B; this is a best fitting rectangle.

To prove the correctness of the algorithm, which clearly runs in time O(n), it suffices to say
that Fy covers all sites and that there is no covering frame of a smaller width, by Lemma 1.
Remark that in most cases the best fitting rectangle with arbitrary aspect ratio is not unique.
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4 Given aspect ratio

height

Now the aspect ratio, a = , of the considered rectangles is also given. The problem is more

wi
complicated because the bounding box is no longer such a direct key to the solution. Nevertheless,
we have the following property.

Lemma 2 The inner and outer e-offsets of any best fitting rectangle with given aspect ratio, a,
contain a point of P. There is always an optimal solution which contains points of P on at least
four of its eight offset edges.

For the position of the points on the four offset edges, a lot of cases seem to be possible, at
first sight. By the next lemma, we reduce the number of cases to three.

As a short and precise notation, we introduce the following abbreviations. For the Y-coordinates
of the horizontal offset edges of a certain frame we say O, Oy, Iy, and I to the outer and inner
top and bottom edges, and for the X-coordinates of the vertical offset edges we say Oy, O,, I,
and I, to the outer and inner left and right edges, see Figure 1.

Lemma 3 There is always a best fitting rectangle with given aspect ratio, a, possibly after a
rotation of P by £90° or 180°, that corresponds to one of three main cases, see Figure 2:

Case 1 Oy, Oy, and I; are determined by points of P.
Case 2 Oy, Oy, I;, and I, are determined by points of P.

Case 3 Oy, I, and I, are determined by points of P.

Figure 2: The three main cases for best fitting rectangles.

Our main result says that there is a simple algorithm to solve these cases.

Theorem 4 A best fitting rectangle with given aspect ratio, a, for n points can be computed in
time O(nlogn).

Proof. Corresponding to the three cases of Lemma 3 and four main orientations (rotations), our
algorithm will find a best fitting rectangle in three main steps, each of which must be executed
four times. All steps are independent from each other. For the simplicity or the description we
assume that no two points of P have identical X- or Y-coordinates. Nevertheless the treatment
of the general case is not difficult at all.

Due to the lack of space we sketch only the algorithm for Case 1. We perform a sweep from
the middle of the interval (O, O;) simultaneously to the top and to the bottom.

Ot = Ymax> Op = Ymin, On = O — Oy, they correspond to the bounding box.
For all points p = (z,y) of P compute (p) = 3 min(O; — y,y — Oy).
Sort the points by decreasing e-value and renumber the points, py, p2, ..., in that order.
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Let ¢; = e(p;) and egtart = Oiob min(1, a%)

Let T be an empty balanced tree to contain points according to their X-coordinates.
Insert all points p; with €; > €5pqr¢ into T'.
For all remaining points p; = (x;,y;) in this order do
Let I, = 2+ — 2¢;(1 + 1) be the width of the inner offset.
Search the two subsequent x;,z, € T with z; < x; < .
Let hy = min(zmin, z; — 26i, 2, — 26, — Iy)
and h, = max(z; — 2¢,z; — 2¢; — Ly, Tiax — 4€; — Ly).
If h; < h, then we have found a narrower covering frame with
Or=h, I =h+2¢;, I, =1, + I,,, O = I, + 2¢;,
I; = Oy — 2¢;, and I, = Oy + 2¢;.
Insert z; into T'.

The algorithm chooses the initial value €444+ such that the inner offset is just a line segment, and
all points lie between Op = ymin and Oy = yYmax- Then € is decreased and more and more points
do no longer lie between O, and Oy + 2¢ or O; — 2e and O,. These points are stored in T, and we
have to find a position of the vertical edges that corresponds to Case 1, i.e., they lie between O,
and I; = Oy +2¢ or I, = O, — 2¢ and O, while the current point p; must lie between I; and I,;
the test if h; < h, takes care of exactly this.

The running time of this algorithm (also for the other cases) is in O(nlogn) since for each
point we perform just one insert and one query operation. O
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