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Abstract

Let P :[0,m] — R? and Q : [0, n] — R? be polygonal curves in the plane, G a subgroup of
the affine group AGL(2,R), and € > 0. By definition, a transformation g € G yields a (G, €)-
Fréchet-match of P and @ if the Fréchet-distance of P and the transformed version g@ of @ is
at most €. In this paper we design a c-approximation algorithm, ¢ > 2, that constructs such
(G, ce)-Fréchet-matches for both the group G, of rigid motions and the group G generated by
translations and uniform scalings. We associate to P, @ and € a certain acyclic digraph M, .,
see Fig. 1, whose edges are either weighted by closed intervals in R5 0 (G = G) or by circular
arcs (G = G,). All maximal paths in M, , correspond to discrete reparametrization pairs;
such a pair yields a c-approximate solution if the intervals assigned to the edges along the
path have a non-empty intersection. To decide whether such a path exists, we use a dynamic
programming approach, whose time complexity is O(m?n?). There is related work dealing
with smaller subgroups of AGL(2,R): Alt and Godau [1] investigated the case G = {1},
whereas both Alt, Knauer and Wenk [2] and Efrat, Indyk and Venkatasubramanian [4] studied
the case G = T5, which denotes the group of translations.

1 Fréchet-Matches

A polygonal curve of length m € N in R? is defined as a continuous mapping P : [0,m] — R
with the property that for all i € [0 : m — 1] := {0,1,...,m — 1} the curve P|; ;1] is affine,
ie, P(i+A) = (1 = NP(i) + AP(i + 1) for A € [0,1]. A polygonal curve P is completely
described by the sequence of its vertices (po,-...,Pm), where p; := P(i). For real numbers
xz < y and ¢’ < y', let Mon([z,y],[z',y']) denote the set of all continuous, weakly increas-
ing and surjective functions ¢ : [z,y] — [2',y']; note that the surjectivity implies p(z) = '
and p(y) = y' for all ¢ € Mon([z,y],[z',y']). Let P and @) be polygonal curves of lengths
m and n, respectively. The Fréchet-distance dp(P,Q) of P and @ is defined as dp(P,Q) :=
inf, g maxycjo1) d(v(a(t)),w(B(t))), where the infimum is taken over all a € Mon([0, 1], [0,m])
and 8 € Mon([0,1],[0,n]). Any subgroup G of AGL(2,R) acts on R? as well as on the set of
all polygonal curves P by (gP)(t) := gP(t) for ¢ € G. Moreover, if P = (po,...,pm), then
gP = (gpo, ..., 9pm).

We are now ready to describe a typical question in pattern matching: given a subgroup G of
AGL(2,R), two polygonal curves P and @, and € > 0, is there a g € G such that dp (P, gQ) < €7
Motivated by this question, we define the set of all (G, €)-Fréchet-matches of P and @ as

Fe(P,Q) :={9 € G |dr(P,9Q) <e}. (1)

Given two polygonal curves P and @ and € > 0, a decision algorithm for this pattern matching
task outputs 1 if F&(P,Q) # 0 and 0 otherwise. Letting ¢ > 1, a c-approzimation algorithm also
outputs 1 if F& (P, Q) # 0. However, the output is guaranteed to be 0 only if & (P,Q) = 0. In
case F&(P,Q) \ F&(P,Q) # 0, the algorithm may answer either 0 or 1. The algorithm proposed
in this paper yields c-approximate solutions for arbitrary ¢ > 2. The algorithm will also be able
to compute specific elements g € F& (P, Q) in case of output 1.
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2 Approximating Fréchet-Matches by Transporter Sets

In this section P = (po,-..,pm) and @ = {(qo,-.-,qn) will always denote polygonal curves of
lengths m and n, respectively. P is called reducible if and only if, for some i, the vertex p; is
contained in the line segment [p;_1,p;+1]. Eliminating p; from the sequence yields another curve
P’ with dp(P, P') = 0. This elimination process finally yields an irreducible curve. In general, two
polygonal curves P and P’ are called equivalent if and only if their Fréchet-distance is zero. The
Fréchet-distance defines a metric on the equivalence classes of polygonal curves. Obviously, in each
equivalence class there is a unique irreducible curve. All other members of this class can be viewed
as oversamplings of this irreducible version. In what follows, oversampling will play a crucial role.
Let 6 > 0. A polygonal curve P is said to be d-sampled if and only if d(p;—1,p;) < 26, for all
€ [1 : m]. Given a polygonal curve P, an equivalent, é-sampled curve P’ can be constructed in
an obvious way.
The notion of d-sampled curves is a first step towards discretizing the reparametrizations o and
B. We will replace («, 8) € Mon([0,1],[0,m]) x Mon([0, 1],[0,n]) by discrete reparametrizations
(K, ) € Iy n, where

I ={(k,A)| £:[0:m+n]—=>[0:m]and A:[0:m+n] = [0:m] (2)
are both weakly increasing and surjective}.

From the facts that the index sequences k and A are surjective and weakly increasing, we may
conclude that {kst1 — ks, Asy1 — As} € {0,1} for all s € [0 : n + m — 1]. To approximate sets
of Fréchet-matches we use certain transporter subsets of the group G. If d denotes the Euclidean
distance in R? and if P and @ have equal length, then TPQ = {g € G | max; d(p;,9q;) < €} is
called the (G,¢€)-transporter of @ to P. Similarly, 77 := {g € G | d(p,gq) < €} denotes the

(G, e)-transporter of ¢ € R? to p € R%. Obviously, TPQ = nTShe

Theorem 2.1 Let P and @) be 6-sampled polygonal curves of lengths m and n, respectively, with
Fe(P,Q) # 0. Then there exists a pair (k,\) € Ly, ., such that () # TSOTCSOA C ]-'EM(P Q).

Unfortunately, our proof of the theorem is not completely constructive, since we require some
g € F&(P,Q) for computing (k, A). When matching two curves, however, such a ¢ is what we are
looking for. Thus, our algorithm for deciding whether Fg (P, ()) is non-empty has to find suitable
integer sequences k and A in a different way. A naive method that enumerates all surjective and
weakly increasing candidate sequences and checks if Tgoi+£o)\ is non-empty for each candidate

sequence only yields an exponential-time algorithm.

3 Intersecting Projected Transporter Sets

Regarding the last theorem, both P ok and @ o A are in (R?)™+"*+1. Thus rp" ., is the

intersection of m + n + 1 individual transporters of the form Tg(’ +)6Q( A Unfortunately, these

individual transporters have a rather complicated structure. In order to simplify the intersection
problem we use the fact that our groups are semidirect products: G = T x H with H = H,. :=
SO(2) for G = G, and H = Hy; := {0E, | 0 > 0} for G = G, where E, denotes the 2 x 2 unit
matrix. Thus the projection n of G onto H with kernel T», i.e., n(th) := h, for t € T» and h € H,
is well-defined. Instead of ng we work with its n-image:

nSs = nlrSs] ={he H|3t € To: the 185}

Note that an analogous statement to TP Q =N T o does not hold for the n-images. Furthermore,

G, s = H, thus to obtain non-trivial transporters we use projected

for p,q € R? we always have 77
transporter sets of the form 77(,,0 o (ao,qn) 38 building blocks. To simplify notation, we let k :=

m+mn + 1 and write P and ( instead of P o x and @) o \.
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Theorem 3.1 Let G € {G,,G,}, k €N, and e > 0. For P,Q € (R*)* and every j € [1 : k — 1]
define

— G G,e
Hj:= m Mips 1,ps), (i 1,05) ﬂn(POvPi>7<IIO7Qi>'
1€[1:5]

Then ng # 0 implies H_1 # 0, whereas ngs = () forces Hi_1 = 0.

Expressed in simple terms, the preceding result states that deciding whether the intersection Hy_1
is non-empty yields an approximate solution to the decision problem asking if the intersection
Tﬁ’é = ﬁ,-nggi is non-empty. Next we take a closer look at the projected (G,e)-transporters

G,e
" po,p1).(q0,41) for G € {Gr:Gs}-

Theorem 3.2 FEach 77(%(;7;1) (go,q1) €O be viewed as a circular arc on the unit circle S', whereas
each 772):;1) (q0,q1) €07 be regarded as a closed interval on Rsq.
Sketch of Proof. One shows that it suffices to compute nff)fm) (0,01) for line segments (po, p1)
and (qo, ¢1) centered at the origin. The construction of the circular arc and the interval is illustrated
in the figure below. |
/’1
r @, )
’ £
a1 90 0, ‘ e % Po
P H r_/
do
9= o
= Po Pr=Po

G =G,. Obvious]y, ng,’é = [91,92]7 where G = Gs. The intersection of the ray HqO
6y — 6, = 2(r,po) and 6> = <Y(r,qo). with the disc Us(po) is a line segment, and thus
Hence, we get 61 = 602 — (f2 — 61) = ng’g can be identified with the closed interval

H(r, q0) — 2(r, po). llooll=/ligollz, llersll2/1lgoll2]-

In case G = G, we can easily decide whether the intersection of finitely many projected trans-
porters is non-empty as N;[z;,y;] # 0 iff max; z; < min; y;.

For G = G, the projected (G, )-transporters are circular arcs, hence intervals on the unit circle.
Such intervals differ in some respects from real intervals. For example, the intersection of two
intervals on S* may consist of up to two disjoint intervals. An easy way to avoid the difficulties in
conjunction with circular-arc intersections is to unroll S' — and intervals on S* — to the interval
[0,27]. Unrolling an interval that covers the angle 0 requires the interval to be split into two
intervals on [0, 27]. Thus, unrolling nG’E N nG V(i 1200) yields up to three (disjoint)

€
(Po,pi),{¢0,4i) (pi—1,pi
intervals in [0, 27].

4 An Efficient Approximate Matching Algorithm

We are now prepared to design an efficient algorithm for approximately matching two polygonal
curves with respect to the Fréchet-distance under a transformation group G € {G,,G;}. To this
end, we introduce for d-sampled polygonal curves P and @ of lengths m and n, respectively,
the acyclic digraph M, := (Vin,n, Em,n) together with a function that assigns a real interval
(G = Gs) or up to two circular arcs (G = G,) to each edge of the graph. (Efrat et al. [4] also
use a graph for finding paths in free-space. However, our graph differs substantially from their
construction.) The digraph M,, , defined by

Vi :=[0:m] x [0:n] and B, , :={((a,b),(c,d)) € V7 , | {1} C{c—a,d — b} C{0,1}},
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1 2 3

Figure 1: The digraph M3 ».

only depends on m and n, see Fig. 1, whereas the weight of the edge e = ((a,b), (¢,d)) € Ep,»,
depends on P, Q,d, e, and G:

. Getd G,e+d
[P7Q7‘5757G((a’ b)’ (C’ d)) = Mpa,pe)(as,qa) n po,pe)(g0,qa) "

Obviously, every pair (k,A) € Iy, ,, defines (after eliminating loops) a path in M, ,, with source
(0,0) and sink (m,n). Conversely, every such path can be transformed into an element of Z,, ,, as
follows: turn every vertex along the path into a pair (ks, As) and repeat the target node of every
diagonal edge, i.e., replace (a,b) — (a+1,b+1) by the subsequence (a,b), (a+1,b+1),(a+1,b+1).

Now we take a closer look at the case G = G5. (The case G = G, is similar, but a little bit
more technical.) Here, each edge e is assigned the empty set or a closed real interval [{.,r.], see
Theorem 3.2. We have to find a path from (0,0) to (m,n) in M,, , such that the intersection
of the involved intervals is non-empty. To decide whether such a path exists, we use the facts
that NI, [2;,y;] = [max; z;, min; y;] and that max; z; € {z1,...,zn5}. In particular, as M, ,
has 3mn + m + n edges, we have at most 3mn + m + n different left borders to consider. For
each possible left border ¢ we define a new 0 — 1 weight on the edges: edge e has weight 1 iff ¢
is contained in [/.,7.]. By dynamic programming one can test in time O(mn) whether there is a
path from (0,0) to (m,n) involving only edges with weight 1.

Theorem 4.1 For G = G, there is an algorithm that on input P,Q,m,n,0,c (with the above
meaning) computes an element g € fé(6+6) (P,Q) if F&(P,Q) # 0 and computes the output 0 if
]_.é(5+5) (P,Q) = 0. Its running time is O(m>n?).

Thus there is a c-approximation algorithm for determining whether the set of (G, e)-Fréchet-
matches is non-empty, for ¢ = 2(1 + d/¢). The same result holds for G = G,.

5 Final Remarks and Future Work

The systematic use of group transporter sets is the basis of a new technique that generalizes the
concept of inverted files from full-text retrieval. It has been successfully applied to content-based
multimedia retrieval, see [3]. In the present work this concept has been extended to (G,¢)-
transporters. We are currently investigating variants of the described algorithm, including match-
ing curves partially as well as matching under other subgroups of AGL(2,R), in particular the
group of similarity transformations generated by translations, rotations and uniform scalings.
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