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Abstract

Given a set P of points in the plane, the graph of triangulations 7 (P) has a vertex for every
triangulation of P, and two of them are adjacent if they differ by a single edge exchange.
In this paper we prove that the subgraph Ta((P) of T(P), consisting of all triangulations
of P that admit a perfect matching, is connected. A main tool in our proof is a result of
independent interest, namely that the graph M(P) that has as vertices the non-crossing
perfect matchings of P and two of them are adjacent if their symmetric difference is a single
non-crossing cycle, is also connected.
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1 Introduction

Given a set P of points in the plane, the graph of triangulations 7 (P) has a vertex for every
triangulation of P, and two of them are adjacent if they differ by a single edge exchange. Graphs
of triangulations have been widely studied; see for example [5, 6]. In particular, it is well-known
that 7 (P) is a connected graph.

In this paper we study the subgraph Ta(P) of T(P), consisting of all triangulations of P
that admit a perfect matching. Not every triangulation contains a perfect matching, so in general
Trm(P) is a proper subgraph of 7 (P). Our main result is that the graph T (P) is connected for
any set P in general position. In other words, we show that any two triangulations of P containing
a perfect matching can be connected through a sequence of edge exchanges, always resulting in
triangulations containing a perfect matching.

In order to prove our main result, we first prove another result of independent interest, which
we now describe. Given a set P in the plane of even cardinality, a perfect matching in P is said to
be non-crossing if no two of its edges intersect. The graph M(P) has as vertices the non-crossing
perfect matchings of P, and two of them are adjacent if their symmetric difference is a single
non-crossing cycle. The case were P is in convex position was studied in [4]. We show that the
graph M(P) is connected for any set P in general position; this is the key ingredient for proving
that Ta(P) is a connected graph.

The rest of the paper is organized as follows. Section 2 contains the results on graphs of perfect
matchings, and Section 3 on graphs of triangulations containing perfect matchings. Our graph
theory terminology follows that of [2]. Throughout the paper we assume that all point sets are in
general position, that is, no three points are collinear.
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2 Graphs of perfect matchings

Let P be a set of 2m points in general position in the plane. The symmetric difference of two
non-crossing perfect matchings in P is a set of alternating cycles; some of these cycles may have
crossings, see Figure 1. We say that two perfect matchings M; and M, differ in a single alternating
non-crossing cycle exchange if their symmetric difference is a single non-crossing cycle; for brevity
we say that M> is obtained from A3 by performing a flip.
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Figure 1: Two matchings M; and Mo; their symmetric difference (right) is the union of two
alternating cycles Cy and Cs, but only C is non-crossing.

The graph of non-crossing perfect matchings M (P) of P is the graph with one vertex for each
non-crossing perfect matching of P, in which two matchings are adjacent if and only if one can
be obtained from the other by a flip. The requirement that the cycle involved in the exchange is
non-crossing is not only a natural one, but it is critical when applying Theorem 2.1 in the next

section.

Theorem 2.1. For any set P of 2m points in general position in the plane, the graph M(P) is
a connected graph.

3 Graphs of triangulations

Let P be a set of points in the plane in general position. The graph of triangulations 7 (P) is
the graph with one vertex for each triangulation of P, in which two triangulations 77 and 75 are
adjacent if and only there are edges e € T1 \ T> and f € T \ T1 such that Tb =17 \ {e} U {f}.
In other words, T, is obtained from T} by replacing the diagonal of a convex quadrilateral by the

other diagonal.
For a non-crossing set E of line segments with endpoints in P, let 7 (P, E) be the subgraph of

T (P) induced by the set of triangulations of P that contain all edges in E.

Lemma 3.1. Let P be a set of points in general position in the plane, E be a non-crossing set
of line segments with ends in P and e ¢ E be a line segment, also with ends in P, and such that
E U {e} is a non-crossing set. For each triangulation T of P that contains all edges in E there is
a triangulation S of P containing E U {e} which is connected to T in T (P, E).

Theorem 3.2. 7 (P, E) is a connected graph for any set P of points in general position in the
plane and any non-crossing set E of line segments with ends in P.

For a set P of 2m points in general position in the plane, let Taq (P) be the subgraph of 7 (P),
induced by the set of triangulations of P that admit a perfect matching. Notice that a set P may
admit some triangulations which contain a matching while some others do not contain any (Figure

2).

Theorem 3.3. Tr (P) is a connected graph for any set P of 2m points in general position in the
plane.
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Figure 2: The triangulation on the left part of the figure contains a perfect matching (solid lines),
but the triangulation on the right part does not contain any, because the 8 independent white
nodes are adjacent only to the 6 black nodes.

4 Conclusions

Our definition of adjacency of the graph of non-crossing matchings M(P) of P via a single alter-
nating non-crossing cycle exchange contains no constraint on the length of the cycle. Nevertheless,
as pointed out in [3], for the purposes of optimization, enumeration, and random generation, it is
desirable that the transformation making a class connected is as local as possible, which somehow
amounts to use an exchange of constant size at each step. Therefore it is natural to consider a
graph of matchings M’(P) in which only exchanges in cycles of length ¢ = 4 (say) are considered.
It is an open problem to decide whether such graph is connected for some constant value of £. For
¢ = 4 we have been able to prove that the corresponding graph contains no isolated point; yet
even this modest fact required quite a long proof.

Finally, there other subgraphs of 7 (P) for which it would be interesting to know whether they
induced a connected subgraph or not. For instance, the set of 3-connected triangulations of P
(see [1] for a related problem), or the set of triangulations with minimum degree at least k.
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