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Abstract

A convex geometry is a combinatorial abstract
model introduced by Edelman and Jamison
which captures a combinatorial essence of “con-
vexity” shared by some structures including fi-
nite point sets, partially ordered sets, trees,
rooted graphs. In this paper, we introduce a
generalized convex shelling, and we show that
any convex geometry can be represented as a
generalized convex shelling. This is “the repre-
sentation theorem for convex geometries” simi-
lar to “the representation theorem for oriented
matroids” by Folkman and Lawrence. An im-
portant feature is that our representation the-
orem is affine-geometric while that for oriented
matroids is topological. Namely our representa-
tion theorem indicates the intrinsic simplicity of
convex geometries.

1 Introduction

Some abstract models of geometric concepts are
known to be useful. For example, a matroid is
considered as the abstraction of linear depen-
dence and plays important roles in finite geom-
etry, coding theory, combinatorial optimization
and so on [11]. Another example is an oriented
matroid, which is considered as the abstraction
of affine (and linear) dependence and which cap-
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tures essences of convex polytopes, point con-
figurations, hyperplane arrangements and so on
[1]. Oriented matroids play an important role
in theory of convex polytopes, discrete geom-
etry, computational geometry and so on, and
they are known to be quite powerful models.

One of the most important theorems in ori-
ented matroid theory is the “topological repre-
sentation theorem” by Folkman and Lawrence
[7]. The topological representation theorem
states that: any simple oriented matroid can
be represented as a “pseudohyperplane arrange-
ment.” So, in principle, when we investigate an
oriented matroid, we only have to look at the
corresponding pseudohyperplane arrangement.
A recent study by Swartz [12] revealed the topo-
logical representation of matroids, saying that
every simple matroid can be represented as the
arrangement of homotopy spheres.

In this paper, we will study yet another ex-
ample of combinatorial abstraction of geometric
concepts, namely a convex geometry. A convex
geometry was introduced by Edelman and Jami-
son [6] as an abstraction of convexity, and it can
be seen as a “dual” (or a “polar” or a “comple-
ment”) of an antimatroid [4]. A convex geom-
etry has been appearing in papers not only on
discrete geometry or combinatorics but also on
social choice theory ([10] for example) or math-
ematical psychology ([5] for a detailed treat-
ment). Also, convex geometries form a greedily
solvable special case of a certain optimization
problem [2].

In this paper, we will show a representa-
tion theorem for convex geometries. The the-
orem says that any convex geometry can be
represented as a “generalized convex shelling.”
Since a generalized convex shelling is defined
in a purely affine-geometric manner, this the-
orem gives an affine-geometric representation of
a convex geometry. Since neither an affine-
geometric representation theorem for matroids
nor for oriented matroids is known, our affine-

7



geometric representation theorem for convex ge-
ometries indicates the intrinsic simplicity of con-
vex geometries. As well as the topological rep-
resentation theorem for oriented matroids plays
a significant role in theory of oriented matroids,
our theorem will play a similar role in theory of
convex geometries.

2 Convex geometries and
the representation theo-
rem

In this section, we will give a definition of a con-
vex geometry, which was introduced by Edel-
man and Jamison [6], and will state our theorem
precisely.

Let E be a nonempty finite set. A family £
of subsets of E is called a conver geometry on
E if L satisfies the following three axioms:

(L1) 0 e £ and E € L;
(L2) if X,Y € £, then X NY € L;

(L3) if X € £\ {E} then there exists some
e € E\ X such that X U {e} € L.

Two convex geometries £1 on E; and L5 on
E, are isomorphic if there exists a bijection
1 : By — E5 such that ¥(X) € L, if and only if
X e L.

Let us look at some examples of convex ge-
ometries.

Example 2.1 (convex shelling). Let @) be a
finite set of points in R%, and define

L={XCQ:conv(X)NQ =X}

Then, we can see that £ is a convex geometry on
@, and we say this kind of convex geometries is a
convex shelling. A convex geometry isomorphic
to some convex shelling on a finite point set Q)
is also called a convex shelling.

Example 2.2 (poset shelling). Let E be a
partially ordered set endowed with a partial or-
der =<, and define £L = {X C EF :e € X and
f S eimply f € X}. Then we can see that L is
a convex geometry on E, and we say this kind
of convex geometries is a poset shelling.

Example 2.3 (tree shelling). Let V be the
vertex set of a (graph-theoretic) tree T, and de-
fine L={X CV: u,v € X = a unique path

connecting u and v only uses vertices in X}.
Then we can see that £ is a convex geometry on
V', and we say this kind of convex geometries is
a tree shelling.

Example 2.4 (graph search). Let G =(V,E)
be a rooted connected graph with root r € V,
and define L ={X CV\{r}:veV\X =>
v can be reached from r by a path only using
vertices in V' '\ X}. Then we can see that £ is
a convex geometry on V' \ {r}, and we say this
kind of convex geometries is a graph search.

For other various examples of convex geome-
tries, see [6] or [9].

Here, we will give yet another example of con-
vex geometries, which was not given explicitly
before.

Example 2.5 (generalized convex
shelling). Let P and () be finite point
sets in RY. Assume that conv(P) N Q = () and
particularly that P N Q) = . Then define

L={XCQ:conv(XUP)NQ = X}.

We say L is the generalized convex shelling on
Q with respect to P. If P = {, this just gives
a convex shelling. So, as the name indicates, a
generalized convex shelling is a generalization of
a convex shelling. While at first sight it is not
so obvious that a generalized convex shelling is
indeed a convex geometry, that can be shown.
(Here we omit the proof.)

Our main theorem will be as follows. This
says that the class of convex geometries co-
incides with the class of generalized convex
shellings, although convex geometries arise from
diverse objects as we saw.

Theorem 2.1. Any convexr geometry is isomor-
phic to some generalized convex shelling.

The main concern of this paper is the proof of
Theorem 2.1. In the next section, for the proof
of Theorem 2.1, we will construct finite sets Py
and Qg of points from a given convex geometry
L so that £ can be isomorphic to the generalized
convex shelling on Q¢ with respect to Fj.

3 Construction of point sets

For our construction, we will use rooted circuits
of a convex geometry. So at the beginning of
this section, we will introduce rooted circuits.
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A rooted circuit of a convex geometry was orig-
inally introduced by Korte and Lovéasz [8].

In order to define a rooted circuit, we need
some more technical words. For a convex ge-
ometry £ on E and A C E, the trace of L on
A is defined as Tr(£,4) = {XNA: X € L}.
A rooted set is a pair (X,r) of a set X and an
element 7 of X. A rooted subset of E is a rooted
set (X,r) such that X C E.

Here comes the definition of a rooted circuit.
Let £ be a convex geometry on E. A rooted
subset (C,r) of E is called a rooted circuit of
L if Tr(L,C) =29\ {C \ {r}}. We denote the
family of rooted circuits of a convex geometry £
by C(L).

Now we are ready for our construction. We
will construct point sets Py and Qg from a given
convex geometry £ on E so that £ can be iso-
morphic to the generalized convex shelling on
Qo with respect to Fp.

Let us say that |E| = n. We will take the (n—
1)-dimensional space R*~!. For each element
e € E, we take a point g(e) € R*™! such that
the points g(e) € R*~! (e € E) can be affinely
independent. Namely, it should hold that for
any {pe € R:e € E} with ) ppe =0,

Zpeq(e)zﬂ = pe=0foralle€E.
eckE

(So conv({q(e) e € E})is an (n — 1)
dimensional simplex.) Also for each rooted cir-
cuit (C,r) € C(L) of L we put a point p(C,r) €
R ! determined as

p(C,r) =[Cla(r) = > qle).

ecC\{r}

(1)

Note that g(r) lies in the relative interior of
conv({g(e) : e € C'\ {r}} U {p(C,r)}) for any
rooted circuit (C,r) € C(L). In this way, we
have set up |E| + |C(£)| points in R*~!.

Let Py = {p(C,r) : (C,r) € C(£)} and Qo =
{g(e) : e € E}. Then PoN Qo = . Now our
claim is as follows.

Claim 3.1. For Py and Qg constructed above,
the generalized convex shelling on Qo with re-
spect to Py is isomorphic to L.

This claim proves Theorem 2.1.

To illustrate the construction, we will look at
examples for n = 3. For n = 3 we have six
non-isomorphic convex geometries. Let E =
{1,2,3} for example. Below we enumerate all

of the six non-isomorphic convex geometries
on {1,2,3} together with their rooted circuits.
£y =223 and C(L£1) = 0; L2 = £, )\ {{1,3}}
and C(Lz) = {({1,2,3},2)}; L3 = L2\ {{3}}
and C(L3) = {({2,3},2)}; L4 = L3\ {{2,3}}
and C('C4) = {({173}71)7({273}72)}7 £5 =
L3\ {{1}} and C(L5) = {({1,2},2),({2,3},2) };
Ls = L4\ {{2}} and C(Ls) = {({1,2},1),
({1,3},1),({2,3},2)}-

Figure 1 depicts the construction of the point
sets for these examples.

4 Idea of the proof

Because of the limitation of the pages, we will
just describe an idea of the proof of Claim 3.1.
The entire proof will appear in the full-paper
version. In this section, any proof will be omit-
ted.

Let £' be the generalized convex shelling on
Qo with respect to Fy. The first thing that
we should care about is that the constructed
point sets Py and g actually satisfy the precon-
dition of generalized convex shellings, namely
conv(Py) N Qo = B. In fact, we can show that
this is the case.

Next, we want to establish a bijection v from
E to Q¢ such that ¢ can be an isomorphism
between £ and £'. As it is natural, we will set
Y(e) = g(e) for each e € E. We want to show
that ¢ is an expected isomorphism between £
and L'.

To show that, we will use a result by Dietrich
[3, 4] which is a characterization of a convex ge-
ometry in terms of the family of rooted circuits.
Therefore, in order to show that ¢ is an iso-
morphism, we will show that ¢ maps a rooted
circuit of £ to a rooted circuit of £’ bijectively.
From the characterization by Dietrich [3, 4], we
can find that it suffices to show the following
two lemmas for our purpose.

Lemma 4.1. 1. In the setting above, for any
rooted circuit (C,r) € C(L), there exists
(C',r") € C(L') such that C' C ¢(C) and
' =Y(r).

2. In the setting above, for any rooted circuit
(C',r") € C(L'"), there exists (C,r) € C(L)
such that C C ~H(C") and r = ~1(r").

We need more facts to prove Lemma 4.1. Ac-
tually, for a proof of Lemma 4.1.2 we use the
concept of a closure operator which appears
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Figure 1: Construction of point sets for n = 3.

in the theory of convex geometries (or closure
spaces more generally).
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