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Abstract

We consider the one-roundVoronoi game, where the
first player (“White”, called “Wilma”) places a set of
n points in a rectangular area Q of aspect ratio ρ �
1, followed by the second player (“Black”, called
“Barney”), who places the same number of points.
Each player wins the fraction of Q closest to one
of his points, and the goal is to win more than half
of the total area. This problem has been studied by
Cheong et al. who showed that for large enough n
and ρ � 1, Barney has a strategy that guarantees a
fraction of 1�2�α, for some small fixed α.

We resolve a number of open problems raised by
that paper. In particular, we give a precise character-
ization of the outcome of the game for optimal play:
We show that Barney has a winning strategy for
n� 3 and ρ�

�
2�n, and for n � 2 and ρ�

�
3�2.

Wilma wins in all remaining cases, i.e., for n � 3
and ρ � �

2�n, for n � 2 and ρ � �
3�2, and for

n � 1. We also discuss complexity aspects of the
game on more general boards, by proving that for a
polygon with holes, it is NP-hard to maximize the
area Barney can win against a given set of points by
Wilma.
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cility location, NP-hardness.

1 Introduction

When determining success or failure of an enter-
prise, location is one of the most important issues.
Probably the most natural way to determine the
value of a possible position for a facility is the dis-
tance to potential customer sites. Various geometric
scenarios have been considered; see the extensive
list of references in the paper by Fekete, Mitchell,
and Weinbrecht [6] for an overview.
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One particularly important issue in location the-
ory is the study of strategies for competing players.
See the surveys by Tobin, Friesz, and Miller [8], by
Eiselt and Laporte [4], and by Eiselt, Laporte, and
Thisse [5].

A simple geometric model for the value of a posi-
tion is used in the Voronoi game, which was pro-
posed by Ahn et al. [1] for the one-dimensional
scenario and extended by Cheong et al. [2] to the
two- and higher-dimensional case. In this game, a
site s “owns” the part of the playing arena that is
closer to s than to any other site. Both considered a
two-player version with a finite arena Q. The play-
ers, White (“Wilma”) and Black (“Barney”), place
points in Q; Wilma plays first. No point that has
been occupied can be changed or reused by either
player. Let W be the set of points that were played
by the end of the game by Wilma, while B is the
set of points played by Barney. At the end of the
game, a Voronoi diagram of W �B is constructed;
each player wins the total area of all cells belonging
to points in his or her set. The player with the larger
total area wins.

Ahn et al. [1] showed that for a one-dimensional
arena, i.e., a line segment �0�2n�, Barney can win
the n-round game, in which each player places a
single point in each turn; however, Wilma can keep
Barney’s winning margin arbitrarily small. This dif-
fers from the one-round game, in which both players
get a single turn with n points each: Here, Wilma
can force a win by playing the odd integer points
�1�3� � � � �2n�1�; again, the losing player can make
the margin as small as he wishes. The used strategy
focuses on “key points”. The question raised in the
end of that paper is whether a similar notion can be
extended to the two-dimensional scenario. We will
see in Section 3 that in a certain sense, this is indeed
the case.

Cheong et al. [2] showed that the two- or higher-
dimensional scenario differs significantly: For suffi-
ciently large n � n0 and ρ � 1, the second player
has a winning strategy that guarantees at least a
fixed fraction of 1�2� α of the total area. Their
proof used a clever combination of probabilistic ar-
guments to show that Barney will do well by playing
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a random point. The paper gives rise to some inter-
esting open questions:

� How large does n0 have to be to guarantee a
winning strategy for Barney? Wilma wins for
n� 1, but it is not clear whether there is a single
n0 for which the game changes from Wilma to
Barney, or whether there are multiple changing
points.

� Barney wins for sufficiently “fat” arenas, while
Wilma wins for the degenerate case of a line.
How exactly does the outcome of the game de-
pend on the aspect ratio of the playing board?

� What happens if the number of points played
by Wilma and Barney are not identical?

� What configurations of white points limit the
possible gain of black points? As candidates,
square or hexagonal grids were named.

� What happens for the multiple-round version
of the game?

� What happens for asymmetric playing boards?

For rectangular boards and arbitrary values of n,
we will show when Barney can win the game. If the
board Q has aspect ratio ρ with ρ� 1, we prove the
following:

� Barney has a winning strategy for n � 3 and
ρ�

�
2�n, and for n� 2 and ρ�

�
3�2. Wilma

wins in all remaining cases, i.e., for n� 3 and
ρ � �

2�n, for n � 2 and ρ � �
3�2, and for

n � 1.

� If Wilma does not play her points on an orthog-
onal grid, then Barney wins the game.

In addition, we hint at the difficulties of more
complex playing boards by showing the following:

� If Q is a polygon with holes, and Wilma has
made her move, it is NP-hard to find a posi-
tion of black points that maximizes the area
that Barney wins.

This result is also related to recent work by
Dehne, Klein, and Seidel [3] of a different type:
They studied the problem of placing a single black
point within the convex hull of a set of white points,
such that the resulting black Voronoi cell in the
unbounded Euclidean plane is maximized. They
showed that there is a unique local maximum.

The rest of this paper is organized as follows. Af-
ter some technical preliminaries in Section 2, Sec-
tion 3 shows that Barney always wins if Wilma does

not place her points on a regular orthogonal grid.
This is used in Section 4 to establish our results on
the critical aspect ratios. Section 5 presents some
results on the computational complexity of playing
optimally in a more complex board. Some conclud-
ing thoughts are presented in Section 6.

For this 4-page abstract, all proofs have been
omitted; a full version of the paper [7] is available
electronically.

2 Preliminaries

In the following, Q is the playing board. Q is a rect-
angle of aspect ratio ρ, which is the ratio of the
length of the smaller side divided by the length of
the longer side. Unless noted otherwise (in some
parts of Section 5), both players play n points; W
denotes the n points played by Wilma, while B is
the set of n points played by Barney. All distances
are measured according to the Euclidean norm. For
a set of points P, we denote by V �P� the (Euclidean)
Voronoi diagram of P. We call a Voronoi diagram
V �P� a regular grid if

� all Voronoi cells are rectangular, congruent and
have the same orientation;

� each point p	P lies in the center of its Voronoi
cell.

If e is a Voronoi edge, C�e� denotes a Voronoi cell
adjacent to e. If p 	 P, then C�p� denotes the
Voronoi cell of p in V �P�. ∂C�p� is the boundary
of C�p� and 
C�p�
 denotes the area of C�p�. 
e
 de-
notes the length of an edge e. Let x p and yp denote
the x- and y-coordinates of a point p.

3 A Reduction to Grids

As a first important step, we reduce the possible con-
figurations that Wilma may play without losing the
game. The following holds for boards of any shape:

Lemma 1 If V �W � contains a cell that is not point
symmetric, then Barney wins.

The following theorem is based on this observa-
tion and will be used as a key tool for simplifying
our discussion in Section 4.

Theorem 2 If the board is a rectangle and if V �W �
is not a regular grid, then Barney wins.
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4 Critical Aspect Ratios

In this section we prove the main result of this paper:
if n� 3 and ρ�

�
2�n, or n� 2 and ρ�

�
3�2, then

Barney wins. In all other cases, Wilma wins. The
proof proceeds by a series of lemmas. We start by
noting the following easy observation.

Lemma 3 Barney wins, if and only if he can place
a point p that steals an area strictly larger than

Q
�2n from W.

Next we take care of the case n � 2; this lemma
will also be useful for larger n, as it allows further
reduction of the possible arrangements Wilma can
choose without losing.

Lemma 4 If n � 2 and ρ �
�

3�2, then Barney
wins. If the aspect ratio is smaller, Barney loses.

The gain for Barney is small if ρ is close to
�

3�2.
Computer experiments have been used to compute
the gain for Barney for values of ρ �

�
3�2. Not

surprisingly, the largest gain was found for ρ� 1. If
the board has size 1 by 1, Barney can gain an area of
approximately 0.2548 with his first point, by placing
it at (0.66825,0.616). as illustrated in Figure 1(a).

Lemma 5 Suppose that the board is rectangular
and that n � 4. If Wilma places her point on a regu-
lar 2�2 grid, Barney can gain 50�78% of the board.

The value in the above lemma is not tight. For
example, if Wilma places her point in a 2 by 2
grid on a square board, we can compute the area
that Barney can gain with his first point. If Bar-
ney places it at (0.5,0.296), he gains approximately
0.136. For an illustration, see Figure 1(b). By plac-
ing his remaining three points at �0�25�4ε�3�0�25�,
�0�25�4ε�3�0�75�, and �0�75�4ε�3�0�75� Barney
can gain a total area of size of around 0�511� ε for
arbitrary small positive ε. For non-square boards,
we have found larger wins for Black. This suggests
that Barney can always gain more than 51% of the
board if Wilma places her four points in a 2 by 2
grid.

The above discussion has an important implica-
tion:

Corollary 6 If n � 3, then Wilma can only win by
placing her points in a 1�n grid.

This sets the stage for the final lemma:

Lemma 7 Let n� 3. Barney can win if ρ�
�

2�n;
otherwise, he loses.

Computational experiments have confirmed that
Barney wins the largest area with his first point if he
places it at �0��4r�2

�
r2 �6��3�.

Theorem 8 If n � 3 and ρ �
�

2�n, or n � 2 and
ρ �

�
3�2, then Barney wins. In all other cases,

Wilma wins.

5 A Complexity Result

The previous section resolves most of the questions
for the one-round Voronoi game on a rectangular
board. Clearly, there are various other questions
related to more complex boards; this is one of the
questions raised in [2]. Lemma 1 still applies if
Wilma’s concern is only to avoid a loss. More-
over, it is clear that all of Wilma’s Voronoi cells
must have the same area. For many boards, both
of these conditions may be impossible to fulfill. It
is therefore natural to modify the game by shifting
the critical margin that decides a win or a loss. We
show in the following that it is NP-hard to decide
whether Barney can beat a given margin for a poly-
gon with holes, and all of Wilma’s stones have al-
ready been placed. (In a non-convex polygon, pos-
sibly with holes, we measure distances according to
the geodesic Euclidean metric, i.e., along a shortest
path within the polygon.)

Theorem 9 For a polygon with holes, it is NP-hard
to maximize the area Barney can claim, even if all
of Wilma’s points have been placed.

6 Conclusion

We have resolved a number of open problems deal-
ing with the one-roundVoronoi game. There are still
several issues that remain open. What can be said
about achieving a fixed margin of win in all of the
cases where Barney can win? We believe that our
above techniques can be used to resolve this issue.
As we can already quantify this margin if Wilma
plays a grid, what is still needed is a refined version
of Lemma 1 and Theorem 2 that guarantees a fixed
margin as a function of the amount that Wilma devi-
ates from a grid. Eventually, the guaranteed margin
should be a function of the aspect ratio. Along sim-
ilar lines, we believe that it is possible to resolve
the question stated by [2] on the scenario where the
number of points played is not equal.

Probably the most tantalizing problems deal with
the multiple-round game. Given that finding an op-
timal set of points for a single player is NP-hard,

17



0.25 0.5 0.75 1.0

0.25

0.5

0.75

1.0

area� 0�2548

0.616

0.66825

0.25 0.5 0.75 1.0

0.25

0.5

0.75

1.0

0.296

(a) (b)

h0

area� 0�136q

h1

Figure 1: Barney has gained more than a quarter (a) more than an eighth (b) of the playing surface.

it is natural to conjecture that the two-player, mul-
tiple round game is PSPACE-hard. Clearly, there
is some similarity to the game of Go on an n� n
board, which is known to be PSPACE-hard [9] and
even EXPTIME-complete [10] for certain rules.

However, some of this difficulty results from the
possibility of capturing stones. It is conceivable that
at least for relative simple (i.e., rectangular) boards,
there are less involved winning strategies. Our re-
sults from Section 4 show that for the cases where
Wilma has a winning strategy, Barney cannot pre-
vent this by any probabilistic or greedy approach:
Unless he blocks one of Wilma’s key points by plac-
ing a stone there himself (which has probability zero
for random strategies, and will not happen for sim-
ple greedy strategies), she can simply play those
points like in the one-round game and claim a win.
Thus, analyzing these key points may indeed be the
key to understanding the game.
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