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1 Introduction

A previous paper by Gudmundsson et al. [3] studied a new type of triangulation called higher-
order Delaunay triangulation. It is a class of well-shaped triangulations for a given point set. Such
triangulations are useful in realistic terrain modeling on a set of points in the plane with known
elevation. Often, in terrain modeling it is desirable to force a given set of edges to be part of the
triangulation. These edges can come from contour lines or from the drainage network [2, 4, 6].
Motivated by this, we study constrained higher-order Delaunay triangulations in this paper. We
first repeat the definition of higher-order Delaunay triangulations:

Definition 1 A triangulation of a set P of points is an order-k Delaunay triangulation if for any
triangle of the triangulation, the circumcircle of that triangle contains at most k points of P.

So a normal Delaunay triangulation is an order-0 Delaunay triangulation, and for any positive
integer k, there can be many different order-k Delaunay triangulations. By definition, any order-k
Delaunay triangulation is also an order-k' Delaunay triangulation if &' > k.

Another important concept from Gudmundsson et al. [3] is the useful order of an edge:

Definition 2 For a set P of points, the order of an edge between two points p,q € P is the
minimum number of points inside any circle that passes through p and q. The useful order of an
edge is the lowest order of a triangulation that includes that edge.

In this paper we study constrained higher-order Delaunay triangulations, which must include
a given set of edges in the triangulation. Note that the order of a Delaunay triangulation with
only one constraining edge is exactly the useful order of that edge. This paper studies the case of
more than one constraining edges. We study the following questions:

1. Given a triangulation 7' (all edges are constraining), determine its order.

2. Given a set P of n points and a set E of edges, determine the lowest order Delaunay
triangulation of P that includes the edges of E.

The first question we can solve in two ways. Circular range counting gives an efficient algorithm
for large orders, and higher-order Voronoi diagrams are the basis of an efficient algorithm for lower
orders.

The main result we have for the second question is that if every edge in E has useful order
k or less, then a triangulation of E and P exists that has order at most 2k — 1. In fact, this
triangulation is the constrained Delaunay triangulation. The bound is worst-case optimal: there
are point sets with constraining edges, all of useful order £ or less, for which any triangulation has
order at least 2k — 1.

Throughout this paper we assume general position, that is, no three points of a point set P lie
on a line, and no four points of P lie on one circle.
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2 Determining the order of a triangulation

Given a triangulation T, we can determine its order k in one of two ways, based on the observations
and algorithms given before in [3]. The first is efficient for any k, in particular, it is the best we
can do if the unknown value k is at least \/n with some logarithmic factors. The second algorithm
is more efficient when k is constant or a function that grows slower than \/n with logarithmic
factors. Small values of k are expected to be most important in practical situations.

Both algorithms begin by determining the O(n) circles through the three points of any triangle
in the triangulation. Then we find out how many points lie in these circles. The circle containing
the largest number of points determines the order of the triangulation.

The first algorithm is based on a circular range searching data structure on P that can
answer point counting queries for query circles efficiently. For various storage requirements
m, a data structure of space O(m) exists that answers such circular range counting queries in
O(n/m*/3log(m/n)) time [1]. The structure takes O(mlog® m) time to construct. We choose
m to be n/2, A triangulation gives rise to O(n) circular range queries; the maximum count
returned yields the order of the triangulation. So this solution takes O(n3/21og®®) n) time in
total.

The second solution comes down to choosing a value k' and testing whether the actual order k
is less than &' or not. This can be done by computing the &’-th order VD and preprocessing it for
point location queries. A query returns the k’-th closest point. To find out — for a query circle
— whether it contains less than k&’ points, we query with the center of the circle and find the k'-th
closest point, which is tested explicitly for containment in the circle. If for all O(n) query circles
the k'-th closest point lies outside, we know that the order is less than &’.

The k'-th order VD can be computed and preprocessed for planar point location in O(nk'logn)
time [5]. We start with k' = 1, and if k& appears to be larger, we double k' and test again.
After at most O(logk) attempts, we find an interval of values [2¢,2¢+1] that must contain k. By
binary search on this interval, we take another O(log k) steps to determine the exact order of the
triangulation 7. So in total, this method takes O(nklognlogk) time.

Theorem 1 Given a triangulation with n vertices, its order k can be determined in O(n>/? logo(l) n)
time and in O(nklognlogk) time.

3 Completing to a Higher Order Delaunay Triangulation

Assume that a set P of n points and a set E of edges are given. P must include the endpoints
from E. This section deals with computing a triangulation of P that includes the edges of E. We
would like the triangulation to have the lowest possible order.

As mentioned in the introduction, a previous paper [3] includes the case |E| = 1. In case there
is only one constraining edge uv, we can determine the lowest k for which wv is a useful order-k
Delaunay edge. Then we can complete it to a triangulation only using triangles whose circumcircle
contains no more than k points. One of the triangles incident to wo has order k, or both, and no
other triangle needs to have higher order. In the completion, wv will be part of triangles Auvs
and Awuwvt. Points s and ¢ are the first points hit by a circle squeezed in between u and v from the
one side and from the other side, see Figure 1(a).

The case with more constraining edges is more difficult than the case of one constraining edge.
In [3] it was shown that if all edges of E are Delaunay or useful first order Delaunay, then a
completion to a first order Delaunay triangulation exists and can be computed in O(nlogn) time.
It is simply the constrained Delaunay triangulation. But as soon as E contains edges that are
useful k-order with k£ > 1, we cannot necessarily complete it to an order-k Delaunay triangulation
anymore, as shown in the next theorem.

Theorem 2 Let P be a set of points and let E be a set of edges that are all useful order-k Delaunay
edges, with k > 2. Then we have:
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(i) For any sets P and E, the constrained Delaunay triangulation has order 2k — 2.

(ii) For some sets P and E, any constrained triangulation has order at least 2k — 2.

(iii) For some sets P and E, the constrained Delaunay triangulation does not have order
smaller than 2k — 2, but some other constrained triangulation has order k.

Proof: We begin with (ii), which is shown by example. Figure 1(b) excluding point s shows
a point set with 9 points and 2 constraining edges. Any constrained triangulation must contain
Auvw, and hence the number of points in the grey circle determines the order. The four other

Figure 1: (a) Hlustration of the first-points-hit (s and ¢). (b) Illustration of the proof.

circles show the useful order of the two constraining edges, which is 4. This example immediately
generalizes to having k& — 1 points in each of the two circle parts left of uv and right of u@. Then
the edges v and ww have useful order k, and the circle through u,v,w contains 2k — 2 points
inside.

Part (iii) of the lemma also follows from Figure 1(b), now including point s. The constrained
Delaunay triangulation has order 2k — 2, but flipping the edge vw to uws reduces the order to k.

For part (i), consider the constrained Delaunay triangulation of P and E, and any triangle
u,v,w of it. The circle through w,v,w can only contain points that are ‘behind’ edges of the
CDT, see Figure 2. These edges must be constraining edges of E. (More correctly: for any point
p € P inside the circle C'(u,v,w) there must be a constraining edge intersecting C'(u, v, w) twice
and which has Auvw and point p on different sides.) Let E' C E be the constraining edges that
intersect C(u,v,w) twice, separate a point of P inside C'(u,v,w) from Auvw, and are closest to
Auvvw among these (that is, no other constraining edge lies in between: in Figure 2, the dashed
edge is not in E').

If there is only one edge e € E’, there can be at most k points behind it inside C(u,v,w)
because the first-point-hit for the edge e in the direction of Auvw will be point u, v, or w, or some
point hit even before. That will give a circle with those same points inside. Since this circle is
one of the two that determine the useful order of e, there can be at most k points inside. Hence,
C(u,v,w) can contain at most k points as well.

If E' contains at least two edges, consider any two of them, say e; and es. Let Cy and Cy be
the circles through the endpoints of e; and e, and the first-point-hit behind the edges e; and es,
respectively, see Figure 2. These two circles together cover the whole of C(u,v,w). Since these
circles are also the ones that determine the useful order of the constraining edges e; and ey, which
is at most k, the circles C; and Cy can contain at most k points each. These include the points
u,v,w, unless the endpoints of e; (or ez) happen to be u, v, or w. But both C; and Cy contain
at least one of u,v,w. Hence, at most k& — 1 other points of P can lie inside each. It follows
that at most 2k — 2 points of P can lie inside C'(u, v, w), which shows that the order of Auvw is
at most 2k—2. Since this triangle was any triangle of the CDT, the part (i) of the lemma follows. O
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Figure 2: The order of a triangle in a constrained Delaunay triangulation.

Conclusions

We have extended results on higher-order Delaunay triangulations and generalized them to con-
strained higher-order Delaunay triangulations. The application of constrained higher order De-
launay triangulations lies in realistic terrain modeling, where a known river network gives the set
of constraining edges. The next research issue is to integrate other criteria for realistic terrain
modeling [6] by optimizing over the constrained higher-order Delaunay triangulations.

An open problem that arises in this paper is the computation of the lowest order completion of

a set of useful order-k Delaunay edges to a triangulation. The constrained Delaunay triangulation
only gives a 2-approximation of the lowest order.
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