
Computing the Detour of Polygons

Ansgar Gr�une Rolf Klein Elmar Langetepe

Abstract

Let P be a simple polygon in R2 with n vertices. The detour of P between two points,
x; y 2 P , is the length of a shortest path contained in P and connecting x to y, divided by the
distance of these points. The detour of the whole polygon is the maximum detour between
any two points in P . We �rst analyze properties of pairs of points with maximum detour.
Next, we use these properties to achieve a deterministic O(n2)-algorithm for computing the
maximumEuclidean detour and a deterministic O(n log n)-algorithm which calculates a (1+")-
approximation. Finally, we consider the special case of monotone rectilinear polygons. Their
L1-detour can be computed in time O(n).

1 Introduction

Let P be a connected set in Rd. For any two points x; y 2 P let dP (x; y) denote the in�mum of
the lengths of all curves which are contained in P and connect x to y. The length of the curves is
measured using a given norm k:k. The detour ÆP (x; y) between x and y in P with respect to k:k
and the detour Æ(P ) of P are de�ned as

ÆP (x; y) :=
dP (x; y)

ky � xk
; Æ(P ) := sup

x;y2P;x6=y

ÆP (x; y):

Narasimhan and Smid [8] examined the problem of computing a value similar to Æ(G) for a
given Euclidean graph G. They restricted the maximum to pairs of vertices. Thus, their problem
is slightly di�erent (but not necessarily easier). The maximum of all points was �rst considered by
Ebbers-Baumann et al. [3]. They presented anO(n logn) approximation algorithm for n-link chains
in E2. Later, Agarwal et al. [1] gave a randomized O(n log3 n) and a deterministic O(n log4 n) exact
algorithm. Simultaneously, Langerman, Morin and Soss [6] constructed an O(n log n) randomized
algorithm for solving the same problem.

In this abstract we present algorithms computing the detour of a simple polygon P � R2 where
P denotes the union of the interior and the boundary. We �rst analyze some general properties of
detour maxima, then we develop an algorithm for the Euclidean metric, and �nally, we present a
faster algorithm for the L1-detour of monotone rectilinear polygons.

2 Properties of Maxima

Ebbers-Baumann et al. [3] showed for the Euclidean norm that every polygonal chain C in R2

has a co-visible1 detour maximum (p; q), i.e. ÆC(p; q) = Æ(C). The proof can easily be extended to
polygons with detour Æ(P ) > 1 and arbitrary norms.2

Lemma 1 Let P � R2 be a simple polygon with Æ(P ) > 1 where the detour is measured with
respect to an arbitrary norm k:k. Then, there always exists a detour maximum (p; q) 2 P � P

which is co-visible in PC 3.

1In this setting, (p; q) is co-visible i� pq \ C = fp; qg.
2Note that for Euclidean distances Æ(P ) = 1 i� P is convex.
3PC = R2 n P ; (p; q) is co-visible in PC i� pq \ P = fp; qg.

61



p = p0 p1 p2 p3 p4 p5 p6 q = p7

dP (p; q)P

Figure 1: Boundary intersection points of pq

Proof. Let (p; q) be a detour maximum. Due to Æ(p; q) = Æ(P ) > 1, (p; q) cannot be co-visible in P .
If (p; q) is co-visible in PC, the proof is done. Otherwise, let p0 := p, pn := q and let p1; : : : ; pn�1
be the boundary intersection points of pq apart from p; q (see Fig. 1), i.e. pi 2 pq \ @P n fp; qg and
pi touches pq \ PC.

If the points pi are ordered by their distance to p, we get kpqk =
Pn�1

i=0 kpipi+1k. Additionally
applying the triangle inequality of dP (:; :) yields:

ÆP (p; q) =
dP (p; q)

jpqj

�-inequ.

�

Pn�1
i=0 dP (pi; pi+1)
Pn�1

i=0 kpipi+1k
(1)

� max
0�i�n�1

dP (pi; pi+1)

kpipi+1k
= max

0�i�n�1
ÆP (pi; pi+1)

The maximum on the right hand side is attained by a pair of points being co-visible in PC. �

For the Euclidean norm one can even show that every detour maximum of any non-convex
polygon must be co-visible in PC. For the L1-norm we will give an stricter statement in section 4.

3 Euclidean Detour of Simple Polygons

In this section, we introduce an algorithm which computes the exact Euclidean detour of a given
polygon P with n vertices. Lemma 1 already allows us to restrict the search for detour maxima to
the boundary of P . The following lemma further reduces the number of candidates.

Lemma 2 Any simple polygon P � R2 has a detour maximum (p; q) which is a vertex-boundary
cut, i.e. at least one of the points p, q is a vertex and the other one lies on the boundary @P .

Lemma 2 suggests the following strategy: For every vertex p of P and every edge e of the
boundary compute the local maximum maxq2e ÆP (p; q) and return the maximum of these values.
However, this does not lead directly to a quadratic upper time bound because the local maximum
cannot be found in constant time.

a

b

c

Fp;e

e

p

P

Figure 2: Shortest path tree SPT(p), funnel Fp;e and its regions

To �nd a local maximum we consider the funnel Fp;e of p and e (see Fig. 2) �rst examined by
Lee and Preparata [7]. Let a and b be the vertices incident to e, then Fp;e is the polygon bounded

62



by e and the shortest paths �(a; c) and �(b; c), where c is the �rst common vertex of �(a; p) and
�(b; p). This vertex c is called the cusp of the funnel, and both paths �(a; c) and �(a; b) are outward
convex (see [5]).

For every point q 2 e the shortest path �(q; p) can be divided into �(q; c) and �(c; p), the �rst
one completely contained within Fp;e. We associate with q the �rst vertex of Fp;e hit by �(q; p).
Thus, if k is the number of vertices of Fp;e, the edge e will be divided into k regions R1; : : : ; Rk

including the degenerate cases R1 := fag and Rk := fbg (see Fig. 2). For each such region a local
maximum can be computed in O(1) if Fp;e and j�(p; c)j are known.

Hence, a local maximum of any point p and any edge e can be computed in O(k) where k is the
number of vertices (or edges) of Fp;e. The funnel Fp;e can easily be computed from the shortest path
tree SPT(p) in O(k) time by looking for the �rst common vertex of �(a; p) and �(b; p). Because
every edge of the shortest path tree SPT(p) (see Fig. 2) can be at most on the boundary of two
funnels and SPT(p) has n� 1 edges, we get the value maxq2@P ÆP (p; q) in time O(n) if SPT(p) is
known.

Guibas et al. [5] have shown how to construct SPT(p) in linear time in any triangulated simple
polygon. Since we can use Chazelle's [2] well-known algorithm to triangulate P in linear time, our
idea leads to an algorithm computing maxq2@P ÆP (p; q) in O(n). Thus, applying Lemma 2 yields
a way to get the detour of P in O(n2).

Theorem 3 Let P � R2 be a simple polygon with n vertices. Its maximum Euclidean detour
value Æ(P ) and a pair of points (p; q) attaining the maximum can be computed in time O(n2).

However, this result might not be best possible. One can transfer the approximation algorithm
of Ebbers-Baumann et al. [3] to the setting of simple polygons achieving a (1 + ")-approximation
in O(n log n). This hints that there could be a sub-quadratic solution. The complete proofs of the
previous results can be found in [4].

4 L
1-Detour of Monotone Rectilinear Polygons

Within the simpler setting of monotone rectilinear4 polygons, we can compute the L1-detour in
linear time. The main reason is a stricter statement about detour maxima proven similarly to
Lemma 1:

Lemma 4 Let P � R2 be a simple rectilinear polygon and let (p; q) 2 P � P be a L1-detour
maximum. If R(p; q) denotes the bounding rectangle5 of p and q, its intersection with P must be
empty apart from p and q, i.e. R(p; q) \ P = fp; qg.

It follows immediately that any L1-detour maximum (p; q) must either be a pair of vertices
or an axis-parallel pair of boundary points. In both cases, (p; q) must be co-visible in PC. If P
is x-monotone6 (y-monotone), further arguments yield that every maximum must be a horizontal
(vertical) vertex-boundary cut.

W.l.o.g. let P be x-monotone. We describe an algorithm examining all upper maximum
candidates, i.e. horizontal vertex-boundary cuts of the upper boundary which are co-visible in PC.
The lower boundary can be treated in the same way.

The algorithm starts at the left-most vertex of the upper boundary and proceeds to the right
(see Fig. 3). While moving on the boundary chain, a stack holds every previously visited left
vertical segment s (i.e. s is vertical and P lies to the left of s) for which there has not been found
any opposite right segment, yet. If the current boundary point is moving upward a vertical (right)
edge, the algorithm pops the corresponding left segments and examines a horizontal pair each time
it pops a vertex of a left segment or �nds a vertex on the current right segment.

4A polygon is rectilinear i� every edge is either horizontal or vertical.
5R(p; q) := fr 2 R2jmin(px; qx) � rx � max(px; qx) ^min(py; qy) � ry � max(py; qy)g.
6P is x-monotone i� its intersection with any vertical line is connected.

63



found candidates

point

segments on stack

current boundary

Figure 3: Some states of the algorithm for monotone rectilinear polygons

When the algorithm has found a maximum candidate (p; q), it has to calculate its detour.
Let �(p; q) be a rectilinear shortest path connecting p and q within P . The y-length ly(�(p; q))
is the summed up length of all vertical segments of �(p; q). The x-length lx(�(p; q)) is de�ned

analogously. Obviously, dL
1

P (p; q) = lx(�(p; q)) + ly(�(p; q)) where lx(�(p; q)) = jpx � qxj due to P

being x-monotone. Thus, for computing ÆL
1

P (p; q) we just need the coordinates of p and q and the
value ly(�(p; q)). The additional path information for calculating ly(�(p; q)) can also be stored on
the stack without increasing the linear time bound of the algorithm. Further details are omitted
in this abstract.

Theorem 5 Let P � R2 be an x-monotone (or y-monotone) rectilinear polygon with n vertices.

An L1-detour maximum (p; q) and its value ÆL
1

P (p; q) = ÆL
1

(P ) can be computed in time O(n).

5 Open Questions

One main questions remains open: Is there a sub-quadratic algorithm computing exactly the
Euclidean detour of any simple polygon or is there a quadratic lower bound? The same problem
is not solved for the presumably easier setting of simple rectilinear polygons and the L1-norm.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, and M. Sharir. Computing the detour of polygonal curves.
Technical report, Freie Universit�at Berlin, Fachbereich Mathematik und Informatik, 2002.

[2] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485{
524, 1991.

[3] A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A fast algorithm for approximating
the detour of a polygonal chain. ESA 2001 - European Symposium on Algorithms, 2001.

[4] A. Gruene. Umwege in Polygonen. Diplomarbeit, Universit�at Bonn, 2002.

[5] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209{233, 1987.

[6] S. Langerman, P. Morin, and M. A. Soss. Computing the maximum detour and spanning ratio
of planar paths, trees and cycles. STACS 2002, pages 250{261, 2002.

[7] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14:393{410, 1984.

[8] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs. SIAM J.
Comput., 30:978{989, 2000.

64




