Controlled Perturbation for Arrangements of Circles

*

Extended Abstract

Dan Halperin

Eran Leiserowitz

School of Computer Science

Tel Aviv University
{danha,leiserow }Qtau.ac.il

Abstract

Given a collection C of circles in the plane, we wish
to construct the arrangement A(C) (namely the sub-
division of the plane into vertices, edges and faces
induced by C) using floating point arithmetic. We
present an efficient scheme, controlled perturbation,
that perturbs the circles in C slightly to form a col-
lection C’, so that all the predicates that arise in the
construction of A(C') are computed accurately and
A(C") is degeneracy free.

We introduced controlled perturbation several
years ago, and already applied it to certain types of
arrangements. The major contribution of the cur-
rent work is the derivation of a good (small) res-
olution bound, that is, a bound on the minimum
separation of features of the arrangement that is re-
quired to guarantee that the predicates involved in
the construction can be safely computed with the
given (limited) precision arithmetic. A smaller res-
olution bound leads to smaller perturbation of the
original input.

We implemented the perturbation scheme and the
construction of the arrangement and we report on
experimental results.

1 Introduction

Computational geometry algorithms often assume
general position of the input and the “real RAM”
computation model. In the case of an arrangement
of circles, general position of the input means that
there is no outer or inner tangency between two cir-
cles, and that no three circles intersect at a common

*Work reported in this paper has been supported in part
by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2000-26473 (ECG - Ef-
fective Computational Geometry for Curves and Surfaces), by
The Israel Science Foundation founded by the Israel Academy
of Sciences and Humanities (Center for Geometric Comput-
ing and its Applications), and by the Hermann Minkowski —
Minerva Center for Geometry at Tel Aviv University.

41

Figure 1: Arrangement of circles with several degen-
eracies.

point (see Figure 1 for a degenerate arrangement). If
one wishes to use floating-point arithmetic (to achieve
fast running time), then even if the input 4s in general
position, round-off errors may cause the algorithm to
fail.

Thus, while building the arrangement in an incre-
mental fashion (that is, adding one circle at a time),
we will check if there is a potential degeneracy in-
duced by the newly added circle, and if so, we will
move that circle, so no degeneracies will occur. The
main idea is to carefully relocate the circle — move
the circle enough to avoid the degeneracies, but not
too much. Depending on the precision of the ma-
chine floating-point representation, and some prop-
erties of the arrangement to be handled, we deter-
mine a bound ¢ on the magnitude of the perturba-
tion, namely, we guarantee that any input circle will
not be moved by a distance greater than §.

Such a perturbation scheme, as was described
above, could be useful for the following reasons:
(i) floating-point arithmetic is usually supported by
hardware, making computations very fast, (ii) degen-
eracies are eliminated, thus an algorithm is made eas-
ier to analyze and implement, (iii) implementations
using exact arithmetic with floating-point filtering,
can be sped up, since the perturbation will cause the
predicates to be evaluated using the floating-point fil-
ters, thus avoiding the use of exact computation.

In many situations, the original input data is inac-

curate to begin with (due to, for example, measuring
errors or approximate modeling), so the damage in-
curred by perturbing slightly is negligible.

The predicates that arise in the construction of ar-
rangements of circles include expressions that contain
division and square-root operations. Those operation
are usually more difficult to handle robustly than ad-
dition, subtraction and multiplication.

The perturbation scheme that we follow, controlled
perturbation, was first presented in [6] as a method to
speed up molecular surface computation. The use of
exact computation turned out to be too slow for real
time manipulation, so a finite precision method was
needed. Controlled perturbation was devised to han-
dle the robustness issues caused by the use of finite
precision arithmetic, and to remove all the degenera-
cies. It was extended in [9], where it was applied
to arrangements of polyhedral surfaces. Those ar-
rangements require complex calculations in order to
achieve a good perturbation bound.

In [9] (as in [6]), the resolution bound (defined in
the next section) is assumed to be given. The reso-
lution bound is a key element in the scheme. In this
work we describe a method for obtaining good resolu-
tion bounds, which we anticipate will lead to a better
understanding of the method and will open the way
to applying the method in other settings.

Related work

Robustness and precision issues have been intensively
studied in Computational Geometry in recent years
[10].

A prevailing approach to overcoming robustness is-
sues in computational geometry is to use exact com-
putation [7, 13]. Such a strategy gives accurate re-
sults, and sometimes even allows the input to be de-
generate. When applied naively, exact computation
can considerably slow down the performance of a pro-
gram. One of the possible solutions is to use filtering
[2, 4, 11]. Typically, the filtering is done at the level
of the number type. That is, a predicate is evalu-
ated using exact computation only if it cannot be
correctly evaluated using finite precision arithmetic.
In [12], high-level filtering is done on arrangements
of conic arcs; a different approach for computing ar-
rangements of conic arcs is given in [1].

An alternative approach aims to compute robustly
with limited precision arithmetic, often by approxi-
mating or perturbing the geometric objects [3, 5, 8].
A variety of methods for handling imprecise geomet-
ric computations are surveyed in [10]. Controlled per-
turbation is a method of this type.

42

2 Overview of the Perturbation
Scheme

For an input circle C;, our algorithm will output a
copy C} with the same radius but with its center pos-
sibly perturbed. We denote by C; the collection of
circles {C1,...,C;}, and by C; the collection of cir-
cles {C1,...,C}}.

The input to our algorithm is the collection C = C,,
of n circles. Each circle C} is given by the coordinates
of its center X;,Y; and its radius R; (we assume that
all the input parameters are representable as floating-
point numbers with the given precision). The input
consists of two additional parameters: (i) the ma-
chine precision p, namely the length of the mantissa
in the floating-point representation, and (ii) an upper
bound on the absolute value of each input number
X;,Y; and R;. The perturbation scheme transforms
the set C into the set C' = C),.

We will build the arrangement in an incremental
fashion (that is, adding one circle at a time), and
if there is a potential degeneracy while adding the
current circle, we will perturb it, so no degeneracies
will occur. We next describe the two key parameters
that govern the perturbation scheme, the resolution
bound and the perturbation bound.

Resolution bound

A degeneracy occurs when a predicate evaluates to
zero. The goal of the perturbation is to cause all
the values of all the predicate expressions (that arise
during the construction of the arrangement of the cir-
cles) to become significantly non-zero, namely to be
sufficiently far away from zero so that our limited pre-
cision arithmetic could enable us to safely determine
whether they are positive or negative.

The degeneracies that arise in arrangement of cir-
cles have a natural geometric characterization as in-
cidences. For example, in outer tangency, two circles
intersect in a single point. In our scheme we trans-
form the requirement that the predicates will evaluate
to sufficiently-far-from-zero values into a geometric
distance requirement.

This is a crucial aspect of the scheme: the trans-
formation of the non-degeneracy requirement into a
separation distance. We will call the bound on the
minimum required separation distance, the resolution
bound and denote it by . Deriving a good resolution
bound is a central innovation in this work. Previ-
ously (e.g., [6]) we assumed that these bounds were
given, and in our experiments we used crude (high)
bounds. The bound on ¢ depends on the size of the
input numbers (center coordinates and radii) and the
machine precision. It is independent of the number

n of input circles.

Perturbation bound

Suppose indeed that ¢ is the resolution bound for all
the possible degeneracies in the case of an arrange-
ment of circles for a given machine precision. When
we consider the current circle C; to be added, it could
induce many degeneracies with the circles in C|_,.
Just moving it by € away from one degeneracy may
cause it to come closer to other degeneracies. This is
why we use a second bound J, the perturbation bound.
The bound ¢ depends on e, on the maximum radius
of a circle in C, and on a density parameter k of the
input which bounds the number of circles that are in
the neighborhood of any given circle and may effect
it during the process, k < n (a formal definition of k
is given in the full version of the paper; in the worst
case k = n).

We say that a point ¢ is a valid placement for the
center of the currently handled circle C;, if when
moved to ¢ this circle will not induce any degener-
acy with any of the circles in C;_,. The bound ¢ is
computed such that inside the disc D of radius § cen-
tered at the original center of C;, at least half the
points (constituting half of the area of the disc) will
be valid placements for the circle. This means that if
we choose a point uniformly at random inside D to
relocate the center of the current circle, it will be a
valid placement with probability at least 3.

After the perturbation, the arrangement A(C') is
degeneracy free. Moreover, A(C') can be robustly
constructed with the given machine precision.!

An alternative view of our perturbation scheme is
as follows. We look to move the centers of the input
circles slightly from their original placement such that
when constructing the arrangement A(C') while using
a fixed precision (floating-point) filter, the filter will
always succeed and we will never need to resort to
higher precision or exact computation.

The details of how to compute the resolution bound
and the perturbation bound are given in the full ver-
sion of this paper.

We quote the result summarizing the resources re-
quired by the algorithm.

Theorem 1 Given a collection C of n circles, the
perturbation algorithm which allows the construc-
tion of the arrangement A(C') runs in total expected
O(n?logn) time.

!The perturbation algorithm should not be confused with
the actual construction of the arrangement. It is only a pre-
processing stage. However, it is convenient to combine the
perturbation with an incremental construction of the arrange-
ment.

43

3 Defining the Predicates and
Determining a Worst Case ¢

As was already stated, the main contribution of this
work is in computing the resolution bound. To do so,
we examine the possible degeneracies, and find the &
required to remove them once we are given the pre-
cision of the underlying arithmetic. In other words,
we determine for each degeneracy a distance € such
that if a pair of features related to this degeneracy
are at least € apart, then we can safely evaluate the
corresponding predicate with the given precision. For
each degeneracy we present the appropriate predicate
and also compute the worst case €. Using this € we
then compute the value of §, the maximum distance
of a perturbed circle C; from its original position, as
described in the previous section.

Denote a predicate which takes m arguments and
determines the sign of an expression by Pr, =
sign(E(z1,...,%y)). Denote by Pr, the predi-
cate which takes m arguments and returns true iff
E(zy,...,z,) > 0. We define a degeneracy when
E=0.

Since we are using floating-point arithmetic, we
cannot compute E exactly. Instead, we are only com-
puting an approximation E of E. We also compute
a bound B > 0 on the maximum difference between
FE and the exact value E, namely, |E — E| < B or
E—B< E<E+B. Thus, if E > B then E > 0,
and if £ < —B then E < 0. The bound B is com-
puted according to the method given in [2].

When we add C; to the collection C;_,, if for all the
predicates involving C; (regarding all the circles that
were already inserted), |E| > B, then C; is in a valid
place, and there is no need to perturb it. If there
exists a predicate P, for which |[E| < B, we define
such a configuration as a potential degeneracy, and
we need to perturb C;. For each predicate, we need
to understand the geometric meaning, of |E| > B, so
it will be reflected in & and then in 6. The details are
given in the full version of the paper.

4 Experimental Results

In this section we report on experimental results with
our implementation of the perturbation scheme that
was described above. We implemented the perturba-
tion scheme as a set of C+4 classes. We also im-
plemented the DCEL (Doubly Connected Edge List)
construction with a simple point-location mechanism.

We have tested our program on four input sets
(see Figure 2): grid, flower, rand_sparse, and
rand_dense. For rand_sparse and rand_dense, all
the input parameters are given as integers (to “pro-
mote” degeneracies). The properties of each input set

are given in Table 1. The results of the perturbation
and running times for those inputs are give in Table 2
(with the IEEE double number type). The tests have
been performed on an Intel Pentium III 1 GHz ma-
chine with 2 GB RAM, operating on a Redhat 7.1
using gce 3.03.

M

140
100
100
100

Name n R

320 | 10
40 | 100
40 | 20
100 | 49

grid
flower
rand_sparse

rand_dense

Table 1: n denotes the number of circles, R denotes
the maximum radius and M is the maximum input
size (center coordinates).

N

¢
@

%
)
)
%)
%
%
(X

KD
,(43
&

0
(2&:
(2@

R
&)

¢
S
"“I Q
ANA
DR
o
X

%

9

DA D%
N

®;
»;
X
®;
e
e

9
9
9
9
9
9

ZA\N
N

R)
®.
AN

Qy
@
P,
!

(>

N

9
oo

0

X

®
o
X
2

@,

PSRN

G
X
NAL

NS
NN .v’;,’;’,'

N

0
A

ZA\N

Y
IQ\
AN

J
N

77

ﬁ\
Y
X
=

&
&
7\

N
%

N

TR

/ WAL
“:‘é;‘\\\\\\\\w/m

N
55
o
7
22

==

=

Y)t
\¢
3¢
25

N A
CINCY
v
ANY
Q’\
Y
&
N
28
NA
X0
=
4
AT
2

0
;
2

2>
<>
S

ZA\N
A
3
0
i

Z <>
":
N
N
W
N

SSSo

===
L2
===

=
%

X
35
0
%
N
Q)
o
&

7
/
59%
e e

.

X
s

7
N

7

==

@
’
@
'®
@

(D
2
AL
2
e*g:
0

o

KID

=7

777

.
”’I'

71
'
gl

X
@’
@’

(&

%
{3

ke
8
®
7,

®)
SABN

*
’\l
A\
l"\l
X
NAL
¢
NAL
N7

54

N
5
NA
5e
A

G

N

X

A
&
A3
l‘\
A3
\ @
I&\
%

&

name avg. max. | p_time | t_time
grid 0.1319 | 0.7275 0.386 0.404
flower 0.9783 | 3.5470 0.274 0.28
rand_sparse | 0.0158 | 0.0172 0.004 0.006
rand_dense | 0.0382 | 0.3860 0.22 0.23

Figure 2: (a) A grid of 320 circles, which involves

Table 2: Avg. denotes the average perturbation
size, max. denotes the maximum perturbation size,
p_time denotes the time of the perturbation (in sec-
onds) and t_time denotes the total (perturbation and
DCEL construction) time (in seconds). The given re-
sults are from averaging the results of 5 tests for each
input.

References

[1] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert,
K. Mehlhorn, and E. Schémer. A computational ba-
sis for conic arcs and Boolean operations on conic
polygons. In Proc. ESA 2002, pages 174-186.
Springer-Verlag, 2002.

[2] C. Burnikel, S. Funke, and M. Seel. Exact geo-
metric computation using cascading. International
Journal of Computational Geometry and Applica-
tions (IJCGA), 11(3):245-266, 2001.

[3] S. Fortune and V. Milenkovic. Numerical stability of
algorithms for line arrangements. In Proc. 7th ACM
Sympos. Comput. Geom., pages 334-341, June 1991.

[4] S. Fortune and C. J. Van Wyk. Static analysis yields
efficient exact integer arithmetic for computational
geometry. ACM Trans. Graph., 15(3):223-248, July
1996.

[5] L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon ge-
ometry: building robust algorithms from imprecise
computations. In Proc. 5th ACM Sympos. Comput.
Geom., pages 208-217, 1989.

many inner and outer tangencies. (b) A “flower” com-
posed of 40 circles, all intersecting in a common point.
(c) A collection of 40 random circles. (d) A collection
of 100 random circles.

[6] D. Halperin and C. R. Shelton. A perturbation
scheme for spherical arrangements with application
to molecular modeling. Comput. Geom. Theory
Appl., 10:273-287, 1998.

[7] K. Melhorn and S. Naher. The LEDA Platform
of Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[8] V. J. Milenkovic. Verifiable implementations of geo-
metric algorithms using finite, precision arithmetic.
Artif. Intell., 37:377-401, 1988.

[9] S. Raab. Controlled perturbation for arrangements
of polyhedral surfaces with application to swept vol-
umes. In Proc. 15th ACM Symposium on Computa-
tional Geometry, pages 163-172, 1999.

S. Schirra. Robustness and precision issues in ge-
ometric computation. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages
597-632. Elsevier Science Publishers B.V. North-
Holland, Amsterdam, 2000.

J. Shewchuk. Adaptive robust floating-point arith-
metic and fast robust geometric predicates. Discrete
Comput. Geom., 18:305-363, 1997.

R. Wein. High level filtering for arrangements of
conic arcs. In Proc. ESA 2002, pages 884-895.
Springer-Verlag, 2002.

[10]

[11]

[12]

C. K. Yap. Towards exact geometric computation.
Comput. Geom. Theory Appl., 7(1):3-23, 1997.

[13]

44

