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Abstract

We propose and analyze an algorithm for dispersing a swarm of robots in an unknown
environment R. We use simple robots with the ability to leave a pheromone behind. Robots
can get local information with their sensors but cannot communicate with other robots. The
primary objective is to minimize the makespan, that is, the time to fill the entire region. We
achieve a competitive ratio of O(log (k + 1)) where k is the number of doorways.

1 Introduction

Multiagent robotics has been an active field in the recent years and there has been many works
on distributed control and coordination of a set of autonomous robots. Principe et al. [6, 16] and
Suzuki et al. [5, 19, 20] have studied pattern formation in distributed autonomous robotics under
various models of robots with minimal capabilities. The related flocking problem, which requires
that a set of robots follow a leader while maintaining a formation, has been studied in several
recent papers; see, e.g., [1, 2, 10] Wagner et al. [3, 21, 22, 23] developed multi-robot algorithms,
inspired by ant behaviors, for searching and covering. Payton et al. [15, 14] propose the notion of
“pheromone robotics” for world-embedded computation.

A natural problem that arises in the study of ”swarm robotics” is how to obtain a quick
dispersal and filling of the environment while maintaining the connectivity of the robot swarm.
That is, devise algorithms to reposition robot swarms in an uknown domain such that every point
of the domain is seen by some robots and for any given pair of robots we can establish a visibility
chain in which consecutive robots can see each other.

Motivations for this behavior can be found on a diverse spectrum of applications for different
domains: space exploration, medicine, military, and industry, just to name a few. Common
applications include exploration and map extraction of an unknown domain, mine sweeping, and
guarding.

A big proportion of previously developed dispersion algorithms rely on greedy strategies such as
go-for-free space [13], where robots move to fill unoccupied space; artificial physics [18] strategies,
where neighboring robots exert “forces” on each other: repulsion forces if the robots are closer
than the target separation, and attraction forces if the neighboring robots are farther away (and
the swarm is in danger of becoming disconnected); and potential fields [11, 17]. Almost all of them
require communication, albeit local, within pairs of robots

Our goal is to develop dispersion algorithm on discrete environments. A discrete environment
is composed of squares or pizels that form a connected subset of the integer grid. There is at most
one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter domain
R through k > 1 door pizels, each of which acts as an infinite source of robots.

Our robots can be implemented with O(1)-size memory and O(1)-size sensor range. There is
no direct communication between robots, instead, they leave pheromones as traces for others to
follow. The robots are decentralized and move only according to local information.
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2 Pheromone-guided Dispersion

As the robots move through the domain, they leave a pheromone trail behind. At each step
a robot surveys its local neighborhood (Figure 1) and decides its next move according to the
positioning of the pheromones, other robots, and obstacles. This process does not require direct
communication between robots. For the case of multiple doors, the pheromones are differentiated
by teams corresponding to each particular doorway.
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Figure 1: Local information available to a robot (at the center in gray) at a particular step of the
simulation. Diamonds represent pheromones, double circled points represent stopped robots, and
black points are currently moving robots

The main goal for a robot is to find a spot in the domain where it can stop, preferrably at the
shortest possible amount of traveled distance. This stopping spot can only be found at the left or
the right of the direction the robot is moving, so not to interrupt the flow of its line. To keep the
robots advancing through the domain and to avoid blocking paths, a spot is available for stopping
only if its surrounding spots do not hold a stopped robot. (Figure 2)

If a robot does not have spot available to stop it should try to keep moving following these set
of priority rules:

e Follow the path is was moving on. Otherwise...
e Try to make a turn that does not conflict with other teams of robots. Otherwise...

e Wait for a constant number of iterations. If there is no possibility of continuing it should
stop.

The pheromones that robot utilize to make trails contain only the team-tag information. Each
pheromone has a constant size lifetime after which it dissapears. Since each moving robot has
another robot following behind at a close distance pheromones get replaced by newer ones as the
trail keeps moving.

Summary of Results With a simpler heuristic and a lack of communication our algorithm
obtained similar results as those expressed by Hsiang et al [12]. We prove that our algorithms
have optimal competitive ratio of O(log (k + 1)) where k is the number of doorways. By having
the robots searching for the closest stopping place we ensure a more efficient use of individual
resources (power supply), while achieving a complete stop for the run with no need of general
communication.
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Figure 2: The figure on the left illustrates an instance of the simulation. Robots are entering
the domain through the door located at the bottom center of the figure. The figure on the right
expands the original at the left with the display of the pheromones that guide the robots.

3 Future Work

e We modified our heuristic, requiring for a robot to stop only when it does not have any other
place to move to.

e We are implementing a new strategy that involves random branching, in which teams coming
from the same doorway, split and branch randomly along the march.

e Similar heuristics are being implemented for continuous environments. For those environ-
ments the step size, and the steering angle of a robot are subject to measurement errors.
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