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ABSTRACT

We define and study an on-line version of the shooter prob-
lem O-LSP. In the standard off-line version the problem is:
given a finite set S of line segments in R? and a point p find
the smallest number of half-lines that start at p and inter-
sect all the segments in S. In our O-LSP on-line version
the segments S = {p1,...,pn} are given one by one and the
selection of the suitable intersecting half-line for p; must be
done, and cannot be changed, immediately after seeing p;.
In this process we can use a half-line that already intersects
some of the segments So in {p1,...,pi—1} by possibly rotat-
ing this half-line in such a way that it keeps intersecting
So. Via the well-know relation between the shooter problem
and circular-arc graphs we reduce it to the on-line Minimal
Clique Cover problem (MCC) for the classes of interval and
circular-arc graphs. Specifically, we are interested in the
competitiveness of on-line algorithms for MCC. An on-line
algorithm A is cp-competitive for the family F' of graphs if
for all G € F, A(G) < ¢rOPT(G) + br, cr and br con-
stants, where A(G) is the solution found by algorithm A for
graph G and OPT(Q) is the optimal (off-line) solution. We
analyze on-line algorithms and two simple (and seemingly
similar) greedy strategies (called LGR and EGR) for MCC
(and O-LSP) and show both upper and lower bounds on
their competitiveness ratio cr. We demonstrate that:

e cr > 2, for any on-line algorithm;

e cr is unbounded for LGR; hence LG R is not compet-
itive.

o cr =2 for EGR; hence EGR is optimal.
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1. DEFINITIONS AND BACKGROUND

An interval graph G is the intersection graph of a family
of closed intervals in the real line. Similarly, a circular-arc
graph is the intersection graph of a family of closed arcs
in a circle. Each vertex v of G corresponds to an interval
(an arc, respectively) and the collection of intervals (arcs,
respectively) is the representation of G. Interval graphs are
often defined in terms of posets as each of them is the co-
comparability graph of a set of closed intervals; see [F85].
Note that interval graphs form a proper subclass of circular-
arc graphs. The class of interval and circular-arc graphs
have been intensively studied, in particular because of their
practical applications (e.g., in memory allocation and in or-
ganizing records in databases [BL76]).

The clique cover for graph G is defined as the family of
subgraphs of G such that each subgraph is a clique and
their union is G. Note that subgraphs in the clique cover
do not need to be vertex-disjoint. The clique cover of the
smallest cardinality #(G) is called a minimal clique cover
and the algorithmic problem of finding it will be denoted in
this paper by MCC.

Specifically, we study on-line algorithms for MCC and our
motivations stem from the shooting problem studied in com-
putational geometry; see [ChN99,JK02]. The problem can
be stated as follows: given a finite set S of line segments in
R? and a point p find the smallest cardinality set of half-
lines that start at p and intersect (stab) all the segments
in S. After projecting the segments onto a disc centered at
p, the problem corresponds to stabbing arcs; see Figure 1.
The on-line version of MCC means that the segments are
given one-by-one is some order and the shooter must decide
immediately after seeing this segment which of the current
shooting directions or a new one will be used; after the deci-
sion has been made the shots cannot be reassigned. Clearly,
segments intersected by the same shot form a clique in the
corresponding circular-arc graph and the smallest number
of such cliques determines the smallest number of shots. An
important theorem, due to Hsu (Theorem 3.2, [HT91]), re-
lates the size of the MCC in circular-arc graphs G with the
maximal independent set size a(G).

THEOREM 1.1. [HT91] If G is not a clique then 8(G) =
a(Q) or (G) = a(G) + 1.



Figure 1: An instance of the shooting problem.

MCC problem for graphs G is clearly related to the graph-
coloring problem where the objective is to find the minimum
integer k, called the chromatic number x(G), and a function
f: V(G) = {1,2,...k} such that no edge e = (u,v) has

f(u) = f(v). For interval graphs G, we have 6(G) = x(G),
where (G) is the graph complement of G. There is a number
of strong results related to on-line coloring algorithms for in-
terval and circular-arc graphs; see e.g. [K98,KQ95,589,595].
Since the complements of interval graphs are not, in gen-
eral, interval graphs, the above relation does not help to
solve our MCC problem via coloring. Similarly, results for

graph-coloring do not help with the circular-arc graphs.

2. ON-LINE mcc PROBLEM

An on-line presentation G< of a graph G is a linear order <
of vertices V of G(V, E). G is the on-line graph induced by
the first ¢ elements {v1,...,v;} of V in < order. The on-line
minimum clique cover (on-line MCC in short) is specified as
follows:

An algorithm A is an on-line algorithm for the minimum
clique cover of an on-line graph G, if given a presentation
G< with the order V = {v1,...,v,} it computes a sequence
of positive integers A(v;),7 = 1,...,n, where A(v;) is the
name of a clique that covers v;, in such a way, that for each
i, A(v;) depends exclusively on G;<.

In other words, the vertices are input one by one, and the
number of the clique that covers v; is established irrevoca-
bly after reading vi,...,v;, together with their adjacency
structure.

The quality of on-line algorithms is measured by the compet-
itive ratio. An on-line algorithm A is cp-competitive for the
family F of graphs if for all G € F, A(G) < crOPT(G)+br,
cr and br constants, where A(G) is the solution found by
algorithm A for graph G and OPT(G) is the optimal (off-
line) solution. In case of the Minimum Clique Cover, we
have OPT(G) = 0(G).

We are looking for competitive algorithms for the on-line
MCC problem on interval and circular arc-graphs. For the
sake of simplicity we describe all results for the class of inter-
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Figure 2: Shots and their ranges: A(vi) = A(vi) =1,
ra[l] = [3,4], A(v2) = A(va) = 2, ra[2] = r3[2] = [7,9].

val graphs, mentioning the differences for circular-arc graphs
whenever necessary.

The main assumption for our considerations is that the input
graph is given already in its interval (respectively: circular-
arc) representation, i.e., v; = [p;,¢;] — a closed interval on
the real line or a closed arc on a circle. This is exactly the
input to O-LSP. The letter s, possibly with subscripts, will
be used to denote shots (i.e., the ordinal numbers for the
cliques). If A is an on-line clique cover algorithm then by
A(v) we denote the shot that covers v, the one that is as-
signed immediately after reading v. Observe that in general
when the algorithm ends there can be also other shots that
stab v.

For an interval graph a shot (i.e., a clique) can be depicted
as a vertical line and a set of segments stabbed with this
line. Usually the choice of such a line for a fixed clique in an
interval graph is not unique. To make our reasoning precise
we introduce the notion of the shot’s range; see Figure 2.

DEFINITION 2.1. Assume that s is a shot number that is
already in use after processing G. The range Tm[s] of s
at phase m is defined as follows: rn[s] = {v; | 1 < j <
m, A(vj) = s}.

Observe that for each shot s in use we have rp[s] # 0.
The ranges of shots potentially decrease in course of the
computation, rp41[s] C rmfs],m=1,...,n —1.

3. GREEDY ALGORITHMS

DerFiNITION 3.1. Algorithm A for the on-line MCC prob-
lem is greedy if for each verter v; in G<, upon assigning
A(v;), if there is already a shot range that intersects v; then
A(v;) 1s not set to a new shot number.

In other words, a greedy strategy always tries to assign shots
already in use, if at all possible. Note that this rule alone
may lead to ambiguous decisions. In the following exam-
ple: v1 = [1,3], v2 = [4,6], vs = [2,5] a greedy algorithm
yields A(v1) = 1, A(v2) = 2, and A(vs) can be either 1 or
2. Despite this ambiguity we can formulate an easy yet very
important property that turns out to be useful for the sub-
sequent considerations.
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Figure 3: Tree of intervals

LEmmA 3.1. If s1 # s2 are two shots already in use by a
greedy algorithm A at the moment m then rp[s1]Nrm[s2] =

0.

Proor: The lemma follows easily from the monotonicity
of shots’ ranges. O

We are able to formulate and prove the first of our main
results.

THEOREM 3.1. For any € > 0 there does not exist a (2 —
€)-competitive algorithm (of any kind) that solves the on-line
MCC problem.

Proor: We are going to build a strategy for an adversary
who plays against a MCC on-line algorithm A. In order to
clear away the influence of the additive constant bp that
stands in the definition of the competitiveness we have to
prove that for any ¢ > 0 and m > 0 the adversary can
impose A(G)/0(G) > 2 — € for some interval graph G such
that (G) > m.

For any natural number k we construct an appropriate se-
quence of n = 2¥*! —2 intervals. The construction for k = 3
is depicted in Figure 3. The adversary uses this sequence,
perhaps several times, according to the following rules:

1. If all A’s clique assignments adhere to the greedy prin-
ciple (as shown in Figure 3) this part of the game
ends after exhausting the whole sequence. We obtain
AG) = n/2 = 2 — 1 and 9(G) = a(G) = 271
Hence A(G)/6(G) can be made arbitrarily close to 2
by a suitable choice of k.

2. If at some moment algorithm A defines two new cliques
for two consecutive intervals wva;_1, v2;, i = 1,2,...
(that is, A does not adhere to the greedy principle)
complete the current level of the tree and finish this
part of the game. Let j — 2 be the index of the last
vertex on this level, i.e. j be the closest power of two
greater than 2i. Then the results are: 8(G) = j/4,
and, summing up the last level separately with the
remaining ones, A(G) > (j/4+ 1)+ (j/4—-1) = j/2,
which makes the ratio A(G)/6(G) greater or equal 2.
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Figure 4: Intervals for LGR.

The whole game is constructed by repeating the above strat-
egy in separate areas (intervals) of the real line sufficiently
many times in order to obtain the required size of the graph
6(G) > m. |

The ambiguity of the clique assignment by the greedy prop-
erty can be resolved in various ways. We analyze two most
intuitive strategies, leftmost greedy LGR and earliest greedy
EGR.

The LGR strategy has a clear geometrical flavor, and it
works according to the following greedy principle: From
the available shots ranges that intersect the current inter-
val choose the leftmost one. Since the ranges of any pair of
shots are disjoint (see Lemma 3.1) this assignment is well
defined.

The EGR works similarly: it selects the earliest available
shot instead of the leftmost one. In this regard it resembles
classical First-Fit packing algorithms.

Despite some similarity of the two variants of the greedy
approach there exists a broad gap between their efficiency.
The former turns out to be non-competitive while the latter
is optimal.

THEOREM 3.2. LGR is not competitive.

ProoOF: For any k > 0 we construct a sequence of 4k — 2
intervals, as depicted in Figure 4. It is easy to see that for the
graph G generated by these intervals we have LGR(G) = 2k
and (G) = 2 — just a shot along left ends of odd-numbered
intervals and another one through the right ends of the even
numbered intervals suffice. Hence theratio LGR(G)/6(G) =
k which is arbitrarily large. O

Below we present two lemmas that describe some interesting
properties of EGR strategy. Let S be an independent set of
maximum cardinality |S| = «(G). We may assume that no
interval from V' is properly contained in any of the intervals
from S; such a set .S exists and can be effectively constructed
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Figure 5: Ranges included in intervals.

for a given interval graph [HT91]. Denote the last property
of S by II. Recall that the size of S states a lower bound to
the efficiency of MCC algorithms.

LEMMA 3.2. At any stage j of computation, for anyv € S
there exists at most one shot s such that r;j[s] is properly
included in v.

PROOF: Assume the contrary: at some moment j there
are shots s., s, whose ranges are properly included in some
interval v € S. From Lemma 3.1 it follows that without
loss of generality the situation can be depicted as in Figure
5. We have EGR(vq;) = A(vq,) = sq and EGR(v,) =
EGR(vy,) = sp. Observe that property II implies that all
the four intervals considered extend beyond the respective
endpoints of v.

Let s, be the shot that has been introduced earlier of the
two. Then s, could not be assigned to vy, since at the time
vy, was considered by the algorithm, shot s, had already
been in use. A symmetric argument applies to the case
that s, is earlier than s, and interval v,,, showing that the
initial assumption is false. This completes the proof of the
lemma. O

By replacing property II with the maximality of the inde-
pendent set S, a similar argument can be used to prove:

LeMMA 3.3. Let vy = [p1, qi] and v, = [pr,q.] be two ad-
jacent intervals from the set S such that q@ < pr, and let
I = [q,pr] be the gap between them. At any stage j of com-
putation there exists at most one shot s such that rj[s] is
properly included in I.

From the above two lemmas we derive that the number of
shots whose ranges are fully included either in some interval
from set S or in some gap between intervals equals 2a(G) +
1, which is sufficient to prove that EGR is 4-competitive.
However, we can show a stronger result.

THEOREM 3.3. EGR(G) < 20(G) + 1.
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PROOF: Assume that the output of algorithm EGR on
an interval graph presentation G< is given. Order all of
the shots from left to right and assign to them new ordinal
numbers 1 through m = EGR(G). Since the ranges of the
shots are disjoint this assignment is well defined.

Fix 7 € {1,...,Lm/2J} and let T[2i — 1] = [a2i71,b21‘71],
r[2i] = [a2i, b2;] be the ranges of two adjacent shots, az;—1 <
bai—1 < az; < bz;. Without loss of generality assume that
shot 2¢ — 1 was used for the first time before shot 2i was
introduced. Then there exists an interval v;;, = [pj;,gj;]
such that EGR(vj;) = 2i, qj; = b2; (i.e. vj; defines the right
boundary of the range of vy;), and p;; > bz;i—1 (otherwise
vj; would be stabbed by the earlier shot 2¢ — 1).

Such an interval vj; exists for each pair of shots 2i — 1, 2,
i =1,...,\m/2], and vj;, ¢ = 1,...,|m/2] are pairwise
disjoint. They form an independent set of G of size |m/2].
Therefore 8(G) > |m/2], hence EGR(G) <20(G)+1. O
Observe that the whole argument in the proof does not
change if we replace intervals by arcs. Therefore we obtain
the final result:

THEOREM 3.4. There is an optimal on-line algorithm for
MCC and O-LSP problems with the competitive ratio 2.
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