Algorithms for Placing and Connecting Facilities and their
Comparative Analysis

Klara Kedem, Irina Rabaev and Neta Sokolovsky
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

1 Introduction

Base stations are fixed stations used to send, receive and transmit signals. Each base station
consists of a tower, communication equipment and antenna(s). An antenna transmits and receives
radio waves. A base station serves users in a specific region defined by the area spanned by the
antenna(s). Usually these regions are circular, but other considerations can be taken into account,
such as topographic data, propagation model, number of covered customers, etc. If two base
stations are not in the range of each other due to transmission constrains, we may use a relay
stations to connect them. A relay station is a station with equipment to receive a signal and
retransmit it. It is mounted on a tower or on an existing base station.

In this paper we discuss algorithms for placing base stations (also referred to as facilities or
servers) and their interconnection: “Given a set of customers and a set of potential locations for
base stations, pick the minimum number of base stations that serve all the customers and then
connect the chosen base stations.” This problem is referred to in the literature as the Connected
Facility Location Problem [1, 2, 4]. We divide the problem into two sub problems and solve
each one separately. The first sub problem is to choose a set of base stations that serves all the
customers. We present the Integer Programming method that yields the optimal solution for
this problem and then review three approximation solutions (Section 2). The second sub problem
deals with adding connectivity between the chosen facilities. Here we present two heuristics: one is
based on Dynamic Programming and the other is based on Integer Programming (Section 3). We
have implemented all the algorithms discussed in the paper, the description of our implementation
and the experimental results are given in Section 4.

2 Finding the set of facilities that serve all the customers
In this section we discuss the algorithms for finding the smallest set of base stations that serves
all the customers. Given n locations where base stations can be placed, and given m customers,
the goal is to build the minimal number of base stations, such that their union serves all the
customers. ;From the geometric point of view: there is a set of customers represented by points
P ={p1,p2,...,pm} and a set of regions R = {ry,ra,...,7,}. Pick the smallest number of regions
such that their union covers all the customers. We discuss four algorithms that solve the stated
problem.

2.1 The optimal solution

We use Integer Programming to find the optimal set of facilities that serves all the customers.
The variables x;, ¢ = 1,...,n, in our problem represent binary decisions whether to build a base
station at a given location or not, where a positive decision is represented by 1, and a negative
decision is represented by O.

Let us formulate the constraints of the problem. Denote by T; the set of base stations that can
serve customer p;, 1 = 1 ... m, (the customer p; is in their range). At least one base station should
serve customer p;, therefore at least one variable from T; is assigned the value 1. Thus, we have
the constrains -, cq @; > 1, Vi € {1,...,m} . The cost of the solution is the total cost of the

selected servers, so the goal is to minimize Zl ¢;x;, where ¢; is the cost of building base station z;.

2.2 The greedy algorithm
Our first sub problem is actually the Set Cover problem. One method to approximate the Set
Cover problem is the greedy algorithm. It is quite straightforward: at each step choose the region

151

with the maximum number of remaining customers in it. Erase these customers from P and
proceed iteratively. The algorithm continues until all customers have been covered. Performance
ratio of the greedy algorithm is O(lnm) [3, 5].

We implemented this greedy algorithm, but improved its output in order to get rid of redundant
base stations. In order to find the redundant servers, we divide the solution set into connected
components (two servers a and b are connected if and only if there exist servers a = x1, %2, ...,z =
b, k > 2, such that for 1 <7 < k — 1 the regions spanned by z; and x;4; intersect). For each base
station x; in the connected component C' we check if for each customer p in its range, there exists
another base station z; in C' that covers p. If it is so, the server z; is redundant and we discard it.

2.3 A randomized algorithm

In this section we discuss a randomized algorithm for finding the cover set. The algorithm uses
an assumption that the number of intersections between regions spanned by the base stations is
bounded by a constant ! (e.g. each region intersects at most [other regions). The algorithm works
as follows. At each step randomly pick a customer p; € P and add all the servers that cover it
to the set S of picked base stations. Update P by deleting from it all the customers currently
covered by S and repeat until all customers are covered. We discard redundant base stations as
in section 2.2.

To estimate the performance of this algorithm let us define OPT be the optimal set cover for
the problem. At each step 4 the algorithm adds n; base stations to the solution, where n; < (the
assumption). Since p; must be covered, one of this n; base stations must appear in OPT. The
algorithm stops when all the base stations from OPT have been added to S. So, for each base
station from OPT the algorithm might pick at most I — 1 other base stations, hence |S| < I|OPT)
and the approximation ratio of the algorithm is O(1).

2.4 Adding the greedy approach into Randomized algorithm

The algorithm we discuss in this section is a variation of the random algorithm in section 2.3.
Instead of randomly picking the next customer from P we pick a customer covered by the least
number of servers. For each customer p; we assign a number n; - the number of facilities that can
serve customer p;. At each step the algorithm picks a customer p; with minimal n; and adds to
the solution all the base stations that cover it. We discard redundant servers as in section 2.2.

3 Connecting the base stations
We now want to connect the picked base stations. In a connected system each base station can
transmit to any other (either directly or through auxiliary base stations). If it is impossible to
connect two servers a and b due to the transmission radius or propagation constrains, we have to
add relay stations to connect a and b. We build the connected system in three stages:
(1) We first find the base stations that can be connected by only adding relay stations to them.
(2) Next we divide the servers into clusters: a and b are in one cluster if there exist servers
a=x1,%2,....,x; = b, k> 2, such that for 1 <¢ < k—1x; and x;41 are in the range of each other.
(3) In the final step we connect clusters by building new servers and adding relay stations.
Stages 1 and 2 can be done simultaneously by an MST algorithm. In stage 3 we use a greedy
strategy: at each step connect the nearest pair of clusters by adding a small number of new servers.
Next, replace these clusters by their union and the additional new base stations. Repeat until
only one cluster is left.
To connect a pair of clusters we use two different approaches: Dynamic Programming and
Integer Programming. We describe them below.

3.1 Dynamic Programming
The input to the Dynamic Programming algorithm consists of two clusters of base stations A and
B and the set of the possible base station locations, D.

We build a full graph G = (V, E), where V = AUBUD. We define a weight function w : E — R
that maps edges to real-valued weight w(u,v), where w(u,v) = cost of connecting u and v. If u
and v belong to the same cluster, then w(u,v) = 0 , if it is impossible to connect v and v, then
w(u,v) = oo, if one or both of the nodes are in D then w(u,v) = cost of building new server(s)
+ cost of connecting u and v by relay stations. The problem of connecting two clusters of base

152

stations is now posed as finding the least-weight path from u to v in G, where u € A, v € B and
the weight of a path is the sum of the weights of its edges. We use Dynamic Programming to find
all the shortest paths between pairs of vertices in G and then find the shortest among the paths
from a node in A and a node in B.

3.2 Integer Programming
We define two types of binary variables x; and y; j: x; represents the decision whether to create
a new base station 4, and y; ; whether to add a relay station on a server ¢ that transmits towards
server j. Each variable may get value 0 or 1, where 1 means that we choose to build the corre-
sponding base station or to add the corresponding relay station, and 0 means we don’t. In order
to build a path between clusters A and B we keep the following properties:
(1) For cluster A (B) we choose exactly one relay station (which will be placed on a new base
station) that has the ability to connect directly to the cluster A (B). We define T4 (resp. Tg) the
set of relay stations that can connect directly to one of the antennas in cluster A (B). Then the
constrains we have are: 32 cp yij = 1,30, cq, yij = 1.
(2) If we choose to add relay station y; ; on base station i, we have to add relay station y;; on
base station j, i.e. if y;; = 1 then y;; = 1. Hence, for each 7 and j, y;; — y;; = 0.
(3) On each new base station should be exactly two relay stations in order to continue the con-
nectivity. Let BT; be a set of relay stations that can be placed on base station x; (this set is either
empty or consists of exactly two relay stations), then for each z; ¢ AUB 2x; — ZyijEBTi yi; = 0.
It is clear that if these properties hold, then we get a valid connection between the two clusters.
The cost of the solution is the total cost of new servers and relay stations. Our goal is to find the
cheapest solution, so the objective function is to minimize Zw vi,€BT, (@ici + yijcij), where ¢; is
the cost of building a base station x; and c¢;; is the cost of adding a relay station y;;. If z; € AUB
then ¢; = 0.

4 Implementation and the experimental results
We have implemented the two algorithms based on Integer programming (sections 2.1 and 3.2) in
C++, and the approximation algorithms for finding cover set (sections 2.2 — 2.4) and the Dynamic
Programming algorithm (section 3.1) in Java . The algorithms were tested on Linux operating
system on Pentium-IIT machine with 512 MB memory. While implementing the algorithms, we
tried to use efficient data structures, but our code was not fully optimized.

The algorithms for the first sub problem were tested and compared on the following inputs:
(1) the number of customers varied between 100 to 5000,
(2) the customers were randomly picked in clusters (standing for villages) within a large square
with side size 15000 units,
(3) the number of possible base station locations varied between 50 to 3500,
(4) the transmission radius of the base station was R = 250 units,
(5) potential locations for base stations were chosen in the following way:
- at grid points G with distance 2R between two points
- at grid points of G shifted by a vector (v2R, v2R)
- additional 70% of random points.
Table 1 shows that the outputs of the approximation algorithms were very close to optimal. We
ran these algorithms on about 50 examples and got encouraging results: all of the approximation
algorithms found near-optimal solution.

Cover size
customers # bs | Randomized Greedy Alg.3 1P
1 5000 3060 215 215 213 210
2 5000 3056 233 235 235 229
3 5000 3162 239 241 237 231
4 3000 3267 206 208 204 201
5 3000 3162 207 211 205 203

Table 1. Finding the set of facilities that serve all the customers

153

Dynamic Programming Linear Programming

Figure 1. Connecting the base stations

The example illustrated in Fig.1 compares the performances of the Dynamic Programming and
Integer Programming algorithms for the 2"¢ sub problem. The input for the two programs con-
sisted of 29 existing base stations and 235 possible locations for new base stations. The programs
gave different connections with the same cost, but the run-time of the Dynamic Programming
algorithm was 38308 msec, while the run-time of Integer Programming algorithm was 53581 msec.
We used 5 kinds of relay stations with transmission radius 300, 350, 400, 450 and 500 units. In
Fig.1 the red points represent the set of customers, green points represent the set of potential
locations for base stations, black circles represent the regions spanned by the base stations that
were picked in order to serve all the customers, blue points represent the base stations we use for
connection and blue lines show the transmission. We run the programs on many example and
in all of them, the costs of connecting the base stations produced by Integer Programming and
Dynamic Programming algorithms were the same. Some of the results are summarized in Table 2.

Time in msec
existing bs # potential places for bs | cost of connecting DP P
1 15 39 15084 2 15
2 9 74 30162 10 22
3 19 66 19110 9 38
4 17 51 17078 6 17
5 21 99 25730 3699 10287

Table 2. Summary of experimental results

In our experimentations we found that approximation algorithms are good in the sense they
provide near-optimal solutions. For the problem of connecting the facilities into interconnected
system we have described two heuristics based on Dynamic and Integer Programming accordingly.
The solutions founded by these algorithms were different in connections, but had the same cost,
which is not surprising since both optimize. In addition, the run-time of the Dynamic Programming
algorithm was better in all our experiments.

References

[1] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. In European
Symposium on Algorithms, pages 179-193, 1996.

[2] S. Guha and S. Khuller. Connected facility location problems. In IMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, volume 40, pages 179-190, 1997.

[3] P. Slavik. A tight analysis of the greedy algorithm for set cover. In ACM Symposium on Theory of
Computing, pages 435—441, 1996.

[4] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location problems. In AP-
PROX, pages 256-270, 2002.

[5] U.Feige. A threshold of Inn for approximating set cover. In The Twenty-FEighth Annual ACM Sym-
posium on the Theory of Computing, pages 314-318, 1996.

154

