Efficient Contour Tree Construction and

Computation of Betti Numbers in Scalar Fields

Tobias Lenz*

Ginter Rote*

Submitted to the 19th European Workshop on Computational Geometry, 2003

Abstract

A new algorithm to construct contour trees is in-
troduced which improves the runtime of known ap-
proaches. It also generates additional topological in-
formation about the data which can be used to com-
pute the Betti numbers for all possible level sets.

1 Introduction

Visualizing Contours in Scalar Fields. A com-
monly used technique to store large amounts of data
is in a scalar field. This data could be measurement
results in any dimension, e.g. elevation information
in geographic information systems. The visualiza-
tion of the data is usually done by drawing level sets
which are points of equal value. A connected com-
ponent in a level set is called contour. In two di-
mensions the scalar value can be interpreted as the
height over a two-dimensional domain. In general the
domain should be given as a simplicial complex and
the scalar values are interpolated over discreet values
at the vertices.

The Contour Tree. To grant high speed for inter-
active systems drawing contours, an efficient struc-
ture is needed. Quickly drawing a level set includes
the knowledge of how many connected components
the system has to draw and where they are. It is suf-
ficient then to have a single simplex through which

*Institut fiir Informatik, Freie Universitdt Berlin, Takus-
trafle 9, 12247 Berlin, Germany,
tlenz, rote@inf.fu-berlin.de

the requested contour passes, a so called seed. By re-
cursively checking the simplices in its neighborhood
the whole connected component of the level set can
be traced.

The contour tree is helpful for creating a sufficient
set of seeds. Every node in the contour tree represents
a point at a level where the number of components
changes. Every edge in the contour tree spans the
interval between the values of the represented points
of the two incident nodes and represents a connected
component. This works for any dimension.

Betti Numbers. In some applications topological
information about the surface is needed, e.g. the
Betti numbers. In topology the i-th Betti number 3;
is defined as the rank of the i-dimensional homology
group. For a d-dimensional object the Betti num-
bers B4, Ba+1, - - - are all zero. In this paper the Betti
numbers are only computed for up to three dimen-
sions, therefore we only care about (g, 31, 82. They
have a very graphic meaning: [y is the number of
connected components, #; is the number of tunnels
through them and fs is the number of enclosed voids.

Previous Work. Carr et al. [1] presented a fast
sweep algorithm. They do two simple sweeps over
the data in order of increasing and decreasing scalar
values to create two trees. In a third step these trees
are combined to the final contour tree. The required
time is O (N +nlogn) for any dimension where N
denotes the size of the simplicial complex and n the
number of vertices.

Pascucci [2] augmented the contour tree for three

173



A D
4 B
600 .\\//.
500
C
\ )
400 /
EX_F
G
H
J I
300
4 “u
L K
M
200 / }V
0]

(b)

Figure 1: A contour map and the corresponding contour tree. Minima and maxima are indicated by squares

and circles, and crosses denote saddle points.

dimensional meshes with the Betti numbers in addi-
tional O (Nlog N) time. The contour tree already
gives fy. B2 can be obtained by checking the bound-
ary — a closed surface encloses a void, an open one
does not. 1 can than be obtained by computing the
Euler characteristic x and than solving the formula

X=X (-1 B

2 Definitions

The Input. The input for the algorithm consists
of a d-dimensional simplicial complex S which forms
a bounded volume D C R%. The scalar field is rep-
resented by a function f : D — R which assigns a
scalar value to every vertex in .S and interpolates the
rest of D linearly.

N denotes the number of d-dimensional simplices,
so the size of the input is O(N). The number of
vertices in S is denoted by n. In d dimensions
N = O (nl4/21) but for “nicely shaped” D, a small
triangulation can be found such that N = O(n).

It is assumed for simplicity that the values of f
are distinct over all vertices in S. The same offect
can easily be achieved e.g. by ordering points lexi-
cographically after their coordinates if they have the
same function value.

Critical Points. In this paragraph the term neigh-
borhood N (v) of a vertex v denotes the subgraph of S
induced by the vertices in S adjacent to v with v be-
ing excluded. Let Ny (v) and N_(v) be the subgraphs
of N(v) induced by the vertices w with f(w) > f(v),

174



fw) < f(v) respectively. Cy(v),C—(v) denote the
number of connected components of N (v), N_(v).

A local mazimum obviously only has lower neigh-
bors, therefore C'y = 0, while a local minimum only
has higher neighbors so C_ = 0. A regular point v
is a point with C; (v) = C_(v) = 1. All other points
are saddle points. The saddle points together with
the local extrema are the critical points. Topological
changes, including changes in the number of compo-
nents, only occur at critical points.

Using these definitions, it is possible to determine
the type for every point in S locally by scanning its
neighborhood. This takes O(N) time.

3 The Contour Tree

Join Tree and Split Tree. The upper level set,
the lower level set, and the (equality) level set of f
at value h are defined as

fo(h)i={z e D| f()>h},

f<(h):={z €D | f(x) <h},

f(h):={x €D | f(x) = h}.
A contour is a connected component of a level set
f=(h). Sweeping through the data by decreasing h,
the set fs grows while f. shrinks continuously, and
f= is their common boundary. The join tree rep-
resents the evolution of the components of the set
f>(h) as h varies. The split tree is defined similarly
for sweeping by increasing h.

Looking at the components of fs (h) as h decreases
the following events can happen.

(a) A new component may appear, starting out at a
local maximum.

(b) Several components may merge into a single one
at a saddle point.

(c) There may be topological changes which do not
change the number of components

Also, events of types (b) and (¢) may occur together.
Join Tree Construction. Assume all saddle

points are known and they are sorted by their func-
tion value. We scan all saddle points v in decreasing

order of f(v). For each v, we select a neighbor w in
each of the C (v) components of N4 (v). We process
each w by starting a monotone increasing path at w,
continuing until we get stuck in a local maximum or
we hit a previously visited vertex.

To maintain the connected components a UNION-
FIND data structure is used with the set of saddle
points as the ground set. If a monotone path hits
a vertex z which was already visited, we FIND its
component. If z is not already in the same component
as v, we add an edge from v to the lowest vertex in
the component of z to the join tree and we perform
the UNION of the components containing v and z.

The case when a monotone path ends in a local
maximum r is easy: We simply add an edge from v
to a new vertex representing r to the join tree.

It may happen that a saddle point receives only
one outgoing edge in the join tree because it just re-
flects a change in topology and not in connectivity
(like a change from a torus to a sphere). We leave
these vertices of degree two in the tree during the
construction, and can eliminate them in a final pu-
rification step after combining the join and split tree
to the contour tree.

Theorem 1 Creating the join tree takes time for
saddle points identification, for sorting and for the
monotone paths. This is in total O(N + tlogt +
m+sa(s,t)) time for t saddle points, m denoting the
number of edges in S and s = ' C(v) is the sum
over all higher neighboring components of all saddles.
This simplifies to O(N + tlogt).

The theorem holds for the split tree respectively.

Combining Two Trees. The Algorithm to com-
bine the join tree with the split tree is explicitly
shown in [1] and it takes O(t) time for ¢ nodes in
the final contour tree.

4 Computing Betti Numbers

Contour Tree with All Critical Points. Usu-
ally the contour tree only gives information about
connectivity which is sufficient for drawing connected

175



components. In three and higher dimensions saddle
points exist which do not change the number of con-
nected components. Following the algorithm in sec-
tion 3 these saddle points are nodes in the contour
tree with degree two and in this section the tree con-
taining all critical points is refered to as ECT —
extended contour tree.

Algorithmic Idea. The following only holds for
up to three dimensions. The ECT provides all points
which cause changes in topology and also the infor-
mation on which connected component the change
occurs. This is sufficient for calculating the Betti
numbers for every possible level set.

Assume the critical points v; ordered by decreasing
function value. The Betti numbers for every interval
(f(vi), f(vit1)) are stored in a tree structure with the
following simple loop.

The nodes in the ECT are processed from top to
bottom. For every node the type is determined and
the Betti numbers for the next interval are changed
according to that type.

For every node in the ECT the type is known af-
ter the construction of the ECT. Possible types are
local maximum or local minimum, a saddle uniting
two components in the join tree (join) or uniting a
component with itself (pseudo-join). The same types
of saddle points can occur in the split tree denoted
by split and pseudo-split.

Betti Numbers for Volumes. The ob-
ject of interest may be the volumetric ob-
ject {z € D] f(x) >w} instead of the surface

fY(w) = {z€D| f(z) =w}. In this case, parts
once connected always stay connected.

For volumetric objects the edges do not always cor-
respond to the number of components. The edges
from a split are complementary components also
known as voids.

In a pre-processing step, every leaf in the ECT cor-
responding to a boundary vertex in S has to be re-
moved if the neighbor has a higher function value.
This has to be done iteratively, as new such leafs
may appear during the process. This removes the
topological changes on the “outside” of the object.

The following changes occur at critical points
sweeping from higher to lower function values.

Local mazimum v;: A new component starts at
f(v;) and at f(v;) — € it becomes a solid ball. This
implies to increment 5y and [, f2 are not changed.

Join: Several components are connected. [y de-
creases by the number of edges to nodes with higher
function value. [, f2 are not changed.

Pseudo-join: A component is connected to itself
(maybe several times) which creates one or more
“handles” and thereby increases the number of tun-
nels. (i is increased by the number of how many
times the component is connected to itself.

Pseudo-split: A tunnel or several ones through the
object close. This is the analogous case to a pseudo-
join, so f; is decreased in the same fashion.

Split: A ball in the complement is split into several
ones. The resulting number of voids is one for each
neighboring node with lower function value.

Local minimum v: A void becomes very small for
f(v)+e, is only a point at f(v) and vanishes at f(v)—
€. Therefore 8, decreases by one.

Betti Numbers for Surfaces. Every closed sur-
face contains a void, therefore a component usually
increases the number of components and the number
of voids. A surface with boundary is open and there-
fore does not contain a void. A surface can only be
open if it touches the boundary of D. This is easy
to check if the contour tree does not only contain all
critical points but also special boundary vertices of
S. This increases the runtime of the contour tree
algorithm.

References

[1] Hamish Carr, Jack Snoeyink, and Ulrike Axen.
Computing contour trees in all dimensions. In
11th ACM/SIAM Symposium on Discrete Algo-
rithms, pages 918-926, 2000.

[2] Valerio Pascucci. On the topology of the level
sets of a scalar field. In Lawrence Livermore
National Laboratory technical report UCRL-JC-
142262, February 2001.

176





