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1 Introduction

The set of (straight-line, or geometric) non-crossing graphs with a given set of vertices
A in the plane is of interest in Computational Geometry, Geometric Combinatorics, and
related areas. In particular, much effort has been directed towards enumeration, counting
and optimization on the set of maximal such graphs, that is to say, triangulations of A.
But little is known about the poset structure of the set of all non-crossing subgraphs under
inclusion. In this paper we associate to A a polytope whose face poset contains the poset
of non-crossing graphs on A embedded in a very nice way.

The construction is based on [5], where a polyhedron X ;(A) of dimension 2n—3 with face
poset (opposite to) that of pointed non-crossing graphs on A is constructed. A straight-line
graph embedded in the plane is called pointed if the edges incident to every vertex span an
angle smaller than 180 degrees. Let n denote the size of A, n, and n; the number of points
in the boundary and the interior of its convex hull, respectively. The polyhedron X_f(A) has
a unique maximal bounded face Xf(.A), of dimension 2n; + ny — 3, there called the polytope
of pointed pseudo-triangulations of A.

Our main new ingredient is that we consider “marked” non-crossing graphs, meaning non-
crossing graphs together with the specification of a subset of their pointed vertices. With
similar ideas but with n extra coordinates for the n possible marks, we get a polyhedron
Y} (A) of dimension 3n — 3 with a unique maximal bounded face Y} (A) of dimension 3n; +
np — 3. The face F in the statement of Theorem 2.5 is precisely the polytope X ;(.A), which
arises by setting to 0 the n new coordinates, corresponding to marks.

The technical tools both in our construction and in [5] are pseudo-triangulations of
planar point sets and their relation to structural rigidity of non-crossing graphs. Pseudo-
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triangulations, first introduced by Pocchiola and Vegter around 1995 (see [3]), have by now
been used in many Computational Geometry applications, among them visibility [4, 3], ray
shooting [1], and kinetic data structures [2]. Streinu [6] introduced the minimum or pointed
pseudo-triangulations, and used them to prove the Carpenter’s Rule Theorem. Pointed
pseudo-triangulations turn out to coincide with the maximal non-crossing and pointed
graphs; that is to say, with the vertices of the polytope Xf(A). Our method extends that
construction and Y} (A) is the polytope of pseudo-triangulations, since its vertices correspond
to all pseudo-triangulations of A.

2 Overview of the method and results

In the sequel we assume our point set A to be in general position, although the results are
proved in the full paper for point sets in degenerate position as well. Let n; and n; be
the number of points of A4 in the interior and boundary of conv(A), respectively, and let
n =n; +n,. We define:

Definition 2.1 (Flips in pseudo-triangulations) Let T be a pseudo-triangulation of A.
We call flips in T the following three types of operations, all producing pseudo-triangulations.

- (Deletion flip). The removal of an edge e € T, if T'\ e is a pseudo-triangulation.
- (Insertion flip). The insertion of an edge e ¢ T', if T' U e is a pseudo-triangulation.

- (Diagonal flip). The exchange of an edge e € T, if T'\ e is not a pseudo-triangulation,
for the unique edge e’ such that (T"\ e) U e’ is a pseudo-triangulation.

The graph of pseudo-triangulations of A has as vertices all the pseudo-triangulations of A
and as edges all flips of any of the types.

Proposition 2.2 The graph of pseudo-triangulations of A is connected and regular of degree
3n;+ny —3=3n—2n, — 3.

As happened with pointed pseudo-triangulations, Proposition 2.2 suggests that the graph
of pseudo-triangulations of A may be the skeleton of a simple polytope of dimension 3n; +
ny—3. As a step towards this result we look at what the face poset of such a polytope should
be. The polytope being simple means that we want to regard each pseudo-triangulation 7’
as the upper bound element in a Boolean poset of order 3n — 3 — 2ny. This number equals
the number of interior edges plus interior pointed vertices in T

Definition 2.3 A marked graph on A is a geometric graph with vertex set A together with
a subset of its vertices, that we call “marked”. We call a marked graph non-crossing if it is
non-crossing as a graph and marks arise only in pointed vertices.

We call a non-crossing marked graph fully-marked if it is marked at all pointed ver-
tices. If, in addition, it is a pseudo-triangulation, then we call it a fully-marked pseudo-
triangulation, abbreviated as f.m.p.t.
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We start defining a linear cone Y, (A) by one inequality for each possible edge and each
n+1

point of A. Its ("}') facets are then translated using the entries of a vector f in R(":)

to produce a polyhedron Y;(A) which has as unique maximal bounded face a polytope

Y7 (A). Our proof goes by analyzing the necessary and sufficient conditions for f to produce

a polytope with the desired properties. We get the next result, where flips in fully-marked

pseudo-triangulations are defined in the natural way from those in pseudo-triangulations:

Theorem 2.4 (The polyhedron of marked non-crossing graphs) If f is a valid choice
of parameters, then there is a simple polyhedron Y; of dimension 3n — 3 whose face poset
equals (the opposite of ) the poset of non-crossing marked graphs on A. In particular:

(a) Vertices of the polyhedron are in 1-to-1 correspondence with fully-marked pseudo-
triangulations of A.

(b) Bounded edges correspond to flips of interior edges or marks in fully-marked pseudo-
triangulations, i.e., to fully-marked pseudo-triangulations with one interior edge or
mark removed.

(c) Extreme rays correspond to fully-marked pseudo-triangulations with one convex hull
edge or mark removed.

We prove valid choices of f to be the interior of a convex polyhedron defined by (7)
strict inequalities and give an explicit choice. Then, from the existence of a valid f and the
Theorem above, the following result is concluded:

Theorem 2.5 (The polytope of all pseudo-triangulations) Let Y;(A) be the face of
Y (A) defined turning into equalities the equations which correspond to convex hull edges or
convex hull points of A, and assume f to be a valid choice. Then:

1. Yy (A) is a simple polytope of dimension 3n — 2n, — 3 whose 1-skeleton is the graph of
pseudo-triangulations of A. (In particular, Yi(A) is the unique mazimal bounded face

of Y1 (A)).

2. Let F be the face of Yy (A) defined by turning into equalities the equations corresponding
to interior points. Then, the complement of the star of F' in the proper face-poset of
Y;(A) equals the poset of non-crossing graphs on A which use all the convex hull edges.

This result, which proves the claims advanced in the introduction, deserves some words
of explanation:

- Since convex hull edges are irrelevant to crossingness, the poset of all non-crossing
graphs on A is the direct product of the poset in the statement and a Boolean poset
of rank nyp.

- The equality of posets in Theorem 2.5.2 reverses inclusions. Maximal non-crossing
graphs (triangulations of A) correspond to minimal faces (vertices of Yy (A)).
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- By “proper” face poset of a polytope we mean that the polytope itself is not considered
a face. We remind the reader that the star of a face F' is the union of all the facets
(maximal proper faces) containing F'.

- We give a fully explicit facet description of Y¢(A). It lives in R*" and is defined by
3 linear equalities and () + n linear inequalities in which those 2n; corresponding to
convex hull edges and vertices of A have to be turned into equalities, thus providing
an affine subspace of dimension 3n — 3 — 2n;, as stated. The face F' is the one obtained
turning into equalities also the n; equations corresponding to interior points.

It is worth mentioning that our results have some rigid-theoretic consequences. Namely:

Theorem 2.6 Let T be a pseudo-triangulation of a planar point set A. Let G be its under-
lying graph. Then:

1. G is infinitesimally rigid, hence rigid and generically rigid.

2. There are at least 2k + 3l edges of T incident to any subset of k pointed plus | non-
pointed vertices of T .

If the pseudo-triangulation is pointed, then it has 2n — 3 edges and parts (2) is just the
Laman characterization of isostatic graphs in the plane as graphs with 2n — 3 edges with
every k vertices incident to at least 2k edges. In particular, Theorem 2.6 generalizes Ileana
Streinu’s result [6] that pointed pseudo-triangulations are isostatic graphs.
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