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ABSTRACT 

In this paper we present an effective kinetic data structure 
and algorithm for efficient maintenance of convex hull of 
moving points in 2d space. Given n points continuously 
moving in the plane we give an efficient algorithm for 
maintaining their convex hull. Our algorithm partitions the 
original points into several groups, each group’s points 
forming a convex polygon and the polygons are nested. 

1- INTRODUCTION 

The problem of convex hull has been exhaustively studied in 
computational geometry [1, 2, 3, 6], but almost in the context 
of static objects with operations like insertion and deletion. 
Our emphasis is on maintenance of convex hull under 
continuous motions of the given objects. Our algorithm takes 
advantage of concurrency and neighbourhood in motions to 
achieve a minimal number of combinatorial events. From this 
point of view our data structure is similar to the dynamic 
computational geometry framework introduced by Atallah 
[7], which studies the number of combinatorially distinct 
configurations of convex hull resulting from continuous 
motion of objects. Our data structure does not need to know 
the full motion of the objects in the beginning.  

Bash, Guibas, and Hershberger in [8] introduced a useful 
technique for maintaining convex hull and closest pair of 
moving points in the plane called kinetic. Kinetic solutions 
are based on occurrence of events. Each event corresponds to 
changes in combination of a constant number of points such 
as reversing the sign of angle ABC, or crossing the point A 
with line segment BC. They called these changes 
‘certificates’. Events are collected and scheduled in a global 
event queue. In kinetic solutions we try to minimize the 
number of events to reduce process time and space.  

A good kinetic algorithm is local, in other words, each point 
is involved in only polylogarithmically many certificates, and 
occurrence of one event does not affect so many points and 
events. For more information about kinetic solutions and 
parameters refer to [9].  

In [4], [5] the convex hull algorithm is based on upper 
envelopes of duals of points in 2d space and calculates a good 
number of events. Their work is on line segments and 
envelopes, but our algorithm acts directly on points and 

convex hull of them, hence our algorithm uses a sensible and 
direct approach. 

Our algorithm only schedules events for adjacent points in 
the data structure, and hence does not involves too many 
events. 

Each object is assumed to be a point. Thus at any time we 
want to have the convex hull of n points continuously moving 
in a restricted area such as a rectangle. We assume that each 
point has a flight plan that defines the moving direction and 
speed of that point. This direction can only change because of 
a collision between the point and borders of the region. Also 
we assume that points can cross each other without any 
collision.  

2- PRELIMINARIES 

It is obvious that during the time between occurrences of two 
consequent events, the points present in convex hull does not 
change, in other word the convex hull is formed of the same 
points (with changing places) resulting the moving convex 
hull. We do not need to calculate the convex hull all the time. 
We initialize the data structure at the beginning and then only 
at the scheduled times apply the events, possibly changing 
the status of the convex hull.  

In the following, we first, present a simpler version of our 
kinetic data structure and then to improve its locality some 
modifications will be applied. However, the main algorithm 
is the same and can use each version of the data structure. 

3- KINETIC DATA STRUCTURE 

Our kinetic data structure is a set of nested convex hulls 
(NCHs) containing all points of the problem (maybe there 
will be only one or two points in the most inner convex hull, 
that represents respectively a point or a line segment. We 
assume that it also represents a convex hull). The convex 
hulls are kept in a simple data structure such as array of 
linked lists (array of convex hulls) or linked list of linked lists 
(linked list of convex hulls). What is important is the 
sequence of points in each convex hull. We study each 
convex hull in clockwise order and next and prior pointers 
for each point of it. 

It is obvious that having NCHs, the convex hull is always 
available (The convex hull of all points is always the outer 
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convex hull). By occurrence of any event we will update the 
NCHs, possibly changing the place of some points in two 
adjacent convex hulls or just changing the child(s) of a point, 
which would be defined later. 

The manner of creating NCHs from initial points is as 
follows: 

Algorithm createNCHs(pointsArray)      // Returns NCHs   

            Input: pointsArray[1..n]  

                            // Array of coordinates of input points 

            Output: nested convex hull of (fixed) points 

{ 

      S: NCHs; 

      flag: array [1..n] of Boolean; 

      for all points, i, in pointsArray do 

            flag[i]  false; 

      while (there is any unflagged point in pointsArrsy){ 

            obtain the convex hull of all unflagged points of  

                  pointsArray, naming CH; 

            add CH to S; 

            set flags of all points of CH to true; 

            } 

      return S; 

} 

 
Figure 1- Nested Convex Hulls used in our kinetic data 

structure 

 
Figure 2- order of points in each convex hull is clockwise and 

each point has two pointers to next and prior points. 

Note that only once we need to create the NCHs from initial 
points; the other times we change the NCHs  when an event 
occurs. These changes are all local and we do not have a 
global event. 

3-1- List of events 

For each event we should work on the points of NCHs that 
cooperate in that event.  

For each point there are (possibly) internal and external 
convex hulls. A part of NCHs is shown in Figure 3 (convex 
hulls A, B, C...). Lines connecting B3 to C2 and B3 to C6 
indicates the FirstChild and LastChild of B3 that will be 
defined for fully localizing the algorithm. 

These definitions for a point, X, as follows: 

- firstChild: Consider a point, P, on immediate inner layer of 
X (IL(X)) which is not visible from X. Moving clockwise 
from p on IL(X), the first point visible from X is called 
firstChild(X).   

- lastChild: Same as firstChild, the last point visible from X 
is called lastChild(X). 

 
Figure 3- a part of NCHs named alphabetically 

For example for point B3 the points as firstChild and 
lastChild are shown in Figure 3 (C2 and C6). 
Important events that may change the outer convex hull 
include:  moving a point, p, from convex hull i to convex hull 
i+1 or i-1 (goOut(p) and goIn(p)). 
List of possible events for a point such as B3 is as follows: 
1- Reaching the border of the region and reflecting the 
direction of motion. We call this event changeDir(B3) 

2- Moving B3 toward the inner convex hull (C). We call this 
event goIn(B3). 

3- Moving B3 toward the outer convex hull (A). We call this 
event goOut(B3). 
4- Exiting C2 from visibility region of B3 (C3 intersects line 
segment B3C2). We call this event notFirstChild(B3). 

5- Entering C1 into visibility region of B3. We call this event 
beFirstChild(B3). 

6- Exiting C6 from visibility region of B3 (C5 intersects line 
segment B3C6). We call this event notLastChild(B3). 

7- Moving C7 into visibility region of B3. We call this event 
beLastChild(B3). 

The last four events ensures having correct firstChild and 
lastChild for each point at event times. 

At each scheduled event we do necessary modifications to 
NCHs. These changes are all local. For example in case of 
Figure 3, moving B3 toward convex hull C leaves B2 and B4 
in convex hull B as neighbours (deleting B3 form convex hull 
B), also inserts B3 as a point of convex hull C between C2 and 
C6. This results entering C3, C4 and C5 recursively in inner 
convex hulls. This (entrance to inner convex hulls 
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recursively) continues until the node that should enter inside 
has only its two Children as visible points of inner convex 
hull; in this case deleting it from outer convex hull and 
inserting it in the inner convex hull is enough. This operation 
is called goIn. In Figures 4, 5 examples of simple goOut and 
simple goIn are shown. Simple events only change the two 
adjacent convex hulls, and do not change the other internal 
convex hulls, whilst complex events change several nested 
convex hulls recursively. 
All these operations are applied at each event and NCHs are 
updated accordingly. 

 
Figure 4- Simple goOut(p) event and changes made in the 

NCHs 

 
Figure 5- Simple goIn(p) event and changes made in the 

NCHs 
In Table 1 we show the changes needed to do with 
occurrence of each event: 

Event 
name 

Certificate Changes after occurrence 

changeDir 

(B3) 

Crossing B3 with 
the border of the 

region 

A reflected direction of 
B3 with respect to the 
border will be applied 

goIn(B3) 
Crossing B3 with 

line segment B2B4 

B3 will be inserted in the 
inner convex hull that 
may result in goIn(Xi) 

for some X and i 
(X∈layers C, D, …) 

recursively 

goOut 

(B3^. 
firstChild) 

Crossing B3 
^.firstChild  (e.g. 
C2) with the line 

segment 
B3B3^.prior 

B3^.firstChild (e.g. C2) 
will be deleted from 

inner convex hull and 
will be inserted between 

B3 and B3^.prior (e.g. 
B2) that may result in 

goOut(Xi) for some i and 
X (X∈layers C, D, …) 

recursively 

notFirstCh
ild(B3) 

Crossing the point 
B3^.firstChild 
^.next (e.g. C3) 

with line segment 
B3B3^.firstChild 

(e.g. B3C2) 

B3^.firstChild^.next (e.g. 
C3) will become the new 

B3^.firstChild 

beFirstChi
ld(B3) 

Crossing the point 
B3^.firstChild 

^.prior (e.g. C1) 
with extension of 

line segment 
B3B3^.firstChild 

(e.g. B3C2) 

B3^.firstChild^.prior 
(e.g. C1) will become the 

new B3^.firstChild 

notLastCh
ild(B3) 

Crossing the point 
B3^.lastChild 

^.prior (e.g. C5) 
with line segment 
B3B3^.lastChild 

(e.g. B3C6) 

B3^.lastChild^.prior (e.g. 
C5) will become the new 

B3^.lastChild 

beLastChil
d(B3) 

Crossing point 
B3^.lastChild 

^.next (e.g. C7) 
with extension of 

line segment 
B3B3^.lastChild 

(e.g. B3C6) 

B3^.lastChild^.next (e.g. 
C7)will become the new 

B3^.lastChild 

Table  1- List of possible events 
In the next section we present the algorithm working with the 
data structure to maintain the convex hull. 

4- KINETIC CONVEX HULL 
MAINTENANCE ALGORITHM 

The high-level pseudo code for this algorithm is given below. 
The code simulates NCHs maintenance and animates moving 
NCHs. Note that all links are implemented by pointers; each 
point has a pointer to next and previous points, and pointers 
to its firstChild and lastChild. With occurrence of each event 
these pointers are modified according to type of event. 

Algorithm Kinetic_Convex_Hull: 

            Input:     pointsArray[1..n]  

                              // Array of coordinates of input points 

                       simTime 

                              // The simulation time 

            Output:  moving convex hull of points 

Var 

      S: NCHs; 

      E: linked list of Events sorted by event time; 

      t, occurrenceTime: Time 

{ 

      S  createNCHs(pointsArray); 

      S  linkChilds(S);  

             // : for all points finds firstChild and lastChild points  

             // (if any)   

      E  scheduleAllEvents(S); 

             // For almost all points there will be 7 events  

             // according to definition in section 3-1. 

             // Exceptions are the points on innermost convex hull 

      t  getTime(); 
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      simTime  simTime + t; 

      occurrenceTime  E^.occurrenceTime; 

             // E^.occurrenceTime is the time of first event 

      while(occurrenceTime < simTime){ 

            draw S till time occurrenceTime; 

               // S has the same configuration during this time 

            applyFirstEvent(E, S); 

             // Applies the first event of list E. Applying this  

             //  event may change both E and S. Because of  

             // this, these two these parameters are called by  

             // reference and change their values in the  

             // function. The places of points of NCHs are updated  

             // and their related events in E are rescheduled.  

            E  E^.nextEvent;  // pointing E to next Event. 

            occurrenceTime  E ^.occurrenceTime; 

      } 

}  

5- CONCLUSIONS 

Using the framework defined in [8] we proposed an 
efficient algorithm using a direct approach. Because of 
the nature of convex hull, it is difficult to localize the 
problem. By using nested convex hulls we showed that 
each point’s motion may only change the status of 
some neighboring points, and as a result were able to 
eliminate many events and achieve efficiency.  
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