Alternating Paths along Orthogonal Segments

Csaba D. Tóth¹ toth@cs.ucsb.edu

Abstract

It was shown recently that in the segment endpoint visibility graph Vis(S) of any set S of n disjoint line segments in the plane, there is an alternating path of length $\Theta(\log n)$, and this bound best possible apart from a constant factor. This talk focuses on the variant of the problem where S is a set of n disjoint *axis-parallel* line segments, and shows that the length of a longest alternating path in the worst case is $\Omega(\sqrt{n/2})$ and O(n/2 + 2).

1 Introduction

Given a set S of disjoint line segments in the plane, an *alternating paths* is a simple polygonal path $p = (v_1 v_2, \ldots, v_k)$ such that $v_{2i-1}v_{2i} \in S$, $i = 1, \ldots, \lfloor k/2 \rfloor$ and $v_{2i}v_{2i+1}$ does not cross any segment of S for $i = 1, \ldots, \lfloor (k-1)/2 \rfloor$.

It is known that there are sets of disjoint segments that do not admit an alternating Hamiltonian path. Hoffmann and Töth [3] proved recently, answering a question of Bose [1, 6], that for any set S of n disjoint line segments in the plane, there is an alternating path running through at least $\lceil \log_2(n+2) \rceil - 1$ segments of S, and this bound is best possible apart from a constant factor.

The $O(\log n)$ upper bound construction [6, 3] is a set S of line segments arranged so that every segment $s \in S$ has two endpoints on the convex hull $\operatorname{conv}(\bigcup S)$, and therefore any alternating path containing segments from both sides of s should go through s as well. In that construction n segments have $\Omega(n)$ different orientations. If all segments are axis-parallel, we can prove a better lower bound:

Theorem 1 For any set S of n disjoint axis-parallel segments in the plane, there is an alternating path running through $\sqrt{n/2}$ segments of S.

Restricting the general upper bound construction to axis-parallel segments, we obtain an upper bound of O(n/2 + 2) (see Fig. 1), which leaves room for further improvements from below or from above.

Figure 1: Axis-parallel segments clipped to a disk.

2 Axis-parallel segments

We may assume that there are at least n/2 horizontal segments in S. Let $H, H \subseteq S$, denote their set. For two segments $s \in H$ and $t \in H$, we say that ssupports t if there is an x-monotone and y-monotone curve connecting a point of s to a point of t such that it does not cross any segment of S. (This includes the case where there is vertical visibility between sand t.) We say that $s \prec t$ iff there is a sequence $(s = s_0, s_1, s_2, \ldots, s_r = t)$ in H such that s_i supports $s_{i+1}, i = 0, 1, 2, \ldots, r-1$ (Fig. 2). The relation \prec is a partial order in H. (A similar order was used in [5]).

Figure 2: $s \prec t$.

By Dilworth's theorem [2], there is either (i) a chain or (ii) an anti-chain of size $\sqrt{n/2}$ with respect to \prec .

¹Department of Computer Science, University of California at Santa Barbara, CA-93106.

(We note that the size of the maximal chain and antichain can be $\sqrt{n/2}$ simultaneously.) In either case, we show that all segments in the chain or anti-chain can be linked together in a common alternating path.

In case (i), let s_1, s_2, \ldots, s_r be a sequence of r, $r \ge \sqrt{n/2}$, segments of H such that each s_i supports s_{i+1} . Denote the left and right endpoint of s_i by a_i and b_i . Let $\gamma(i)$, be the x- and y-monotone curve connecting s_i and s_{i+1} such that the two endpoints of $\gamma(i)$ are $v_i \in s_i$ and $w_i \in s_{i+1}$ (fig. 2).

Figure 3: The initial paths $\pi(i)$.

For every i, place a rubber band along the path $(a_i v_i) \cup \gamma(i) \cup (w_i b_{i+1})$. Then let the rubber band contract while its endpoints stay pinned down at a_i and b_{i+1} with the constraint that it cannot cross any segment of S. The rubber band forms a polygonal path $\pi(i)$ through segment endpoints lying between s_i and s_{i+1} (Fig. 4). Notice that $\pi(i)$ remain x- and y-monotone.

Figure 4: Paths $\pi(i)$ after one iteration.

Next, we expand recursively every $\pi(i)$ into an alternating path between s_i and s_{i+1} . We want to make sure that the concatenation of the resulting r-1 alternating paths is also a simple alternating path, that is, the r-1 alternating paths are pairwise disjoint.

Consider a path $\pi(i)$. If there is a segment \hat{s} which has exactly one endpoint $v(\hat{s})$ with $\pi(i)$, then we modify $\pi(i)$ to go along \hat{s} and visit the second endpoint of \hat{s} . We call this operation an *expansion* of $\pi(i)$. The expansion practically means that we pick the segment of $\pi(i)$ lying before or after the common vertex $v(\hat{s})$ and pull the rubber band to the second endpoint of \hat{s} with the constraint that it cannot cross any other segment of S. We choose the *directions* of the expansion as follows: If \hat{s} is horizontal and lies on the left (right) side of $\pi(i)$ then we expand the segment of $\pi(i)$ above (below) $v(\hat{s})$. If \hat{s} is vertical and lies on the left (right) side of $\pi(i)$ then we expand the segment of $\pi(i)$ to the left (right) of $v(\hat{s})$ (see Fig. 4 and 5).

Figure 5: The resulting alternating path.

Inevitably, when we expand a segment of $\pi(i)$ to visit a second endpoint of \hat{s} , our path may hit other segment endpoints between s_i and s_{i+1} . The choice of directions of the expansion ensure that $\pi(i)$ never hits a segment endpoint that is already visited by $\pi(i)$ or a second endpoint of a segment whose one endpoint is in $\pi(i)$. We maintain two invariants:

- 1. Every piece of $\pi(i)$ which does not lie along a segment of S is x- and y-monotone;
- 2. If an \hat{s} has one common point $v(\hat{s})$ with $\pi(i)$ and lies on the left (right) of $\pi(i)$, then $v(\hat{s})$ is its right or lower (left or upper) endpoint.

One can show that repeating the *expansion* operation on the path $\pi(i)$, we end up with r-1 pairwise disjoint alternating paths between the pairs (s_i, s_{i+1}) .

In case (ii), note that any two segments in an antichain are separated by a vertical line, therefore the segments in the anti-chain have a linear left-to-right order. Consider the $r, r \ge \sqrt{n/2}$, segments of an anti-chain $A = \{s_1, s_2, \ldots, s_r\} \subset H$ labeled according to this order (Fig. 6). Denote the left and right endpoint of each s_i by a_i and b_i .

Observe that $s_i \not\prec s_{i+1}$ and $s_i \not\succ s_{i+1}$ implies that there is no x- and y-monotone curve between s_i and s_{i+1} which avoids vertical segments but possibly crosses horizontal segments. Specifically, if the y-coordinate of s_i is smaller than that of s_{i+1} , then there is staircase (axis-parallel x- and y-monotone) curve between b_i and a_{i+1} whose every vertical segment is along a vertical segment of S (middle of Fig. 6). Informally, this staircase curve blocks any curve which would imply a relation $s_i \prec s_{i+1}$. (If the y-coordinate of s_i is larger than that of s_{i+1} , there is no specific condition.)

Figure 6: Linear oder in an anti-chain.

For every i, i = 1, 2, ..., t - 1, we connect b_i and a_{i+1} by a rubber band $\varrho(i)$: If b_i is above a_{i+1} then we find a monotone descending polygonal path that can cross vertical segments but must avoid horizontal segments. If b_i is below a_{i+1} then consider the polygonal staircase path from b_i to a_{i+1} as described above. In both cases, let us denote this polygonal path by $\varrho(i)$ (dashed in Fig. 6).

Figure 7: The initial curve $\rho(i)$ with monotone descending visibility edges.

Recursively, at every intersection point of $\rho(i)$ with a vertical segment vw, we force the rubber band $\rho(i)$ to pass through v and w such that $\rho(i)$ is ascending along vw. In this way, we obtain a curve $\pi(i)$ that does not cross any segment of S and whose pieces not lying along segments of S are x-monotone increasing and y-monotone descending. Finally, we expand recursively every $\pi(i)$ into an alternating path between b_i and a_{i+1} using the similar expanding operations as in case (i). Consider a segment $\hat{s} \in S$ with one common point $v(\hat{s})$ with $\pi(i)$. If \hat{s} is horizontal and lies on the left (right) side of $\pi(i)$ then we expand the segment of $\pi(i)$ below (above) $v(\hat{s})$. If \hat{s} is vertical and lies on the left (right) side of $\pi(i)$ then we expand the segment of $\pi(i)$ the the left (right) of $v(\hat{s})$ (Fig. 8).

Figure 8: Winding the rubber band around obstacles.

We can maintain similar invariants as in case (i) (now, portions of $\pi(i)$ not lying along segments of S are monotone descending). One can show that the expansion of $\pi(i)$ does not touch any segment endpoint twice, every resulting path is simple. The invariants also ensure that all r-1 resulting alternating paths are pairwise disjoint. This completes the proof of Theorem 1.

References

- E.D. Demaine and J. O'Rourke, Open Problems from CCCG'99, in: Proc. 11th Canadian Conf. on Comput. Geom. (Vancouver, 1999).
- [2] R. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Maths. 51 (1950), 161–166.
- [3] M. Hoffmann and Cs. D. Tóth, Alternating paths through disjoint line segments, submitted, presented at the 18th European Workshop on Computational Geometry (Warsaw, 2002).
- [4] M. Hoffmann and Cs. D. Tóth, Segment endpoint visibility graphs are Hamiltonian, Comput. Geom. Theory Appl., in print.
- [5] R. Tamassia, I.G. Tollis, A unified approach to visibility representations of planar graphs, *Discrete Comput. Geom.* 1 (1986), 321–341.
- [6] J. Urrutia, Algunos problemas abiertos (in Spanish), in: Actas de los IX Encuentros de Geometría Computacional (Girona, 2001).