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Abstract

It was shown recently that in the segment endpoint visibil-

ity graph Vis(S) of any set S of n disjoint line segments in

the plane, there is an alternating path of length �(log n),

and this bound best possible apart from a constant factor.

This talk focuses on the variant of the problem where S

is a set of n disjoint axis-parallel line segments, and shows

that the length of a longest alternating path in the worst

case is 
(
p
n=2) and O(n=2 + 2).

1 Introduction

Given a set S of disjoint line segments in the plane,
an alternating paths is a simple polygonal path
p = (v1 v2; : : : ; vk) such that v2i�1v2i 2 S, i =
1; : : : ; bk=2c and v2iv2i+1 does not cross any segment
of S for i = 1; : : : ; b(k � 1)=2c.

It is known that there are sets of disjoint segments
that do not admit an alternating Hamiltonian path.
Ho�mann and T�oth [3] proved recently, answering a
question of Bose [1, 6], that for any set S of n dis-
joint line segments in the plane, there is an alternat-
ing path running through at least dlog2(n+ 2)e � 1
segments of S, and this bound is best possible apart
from a constant factor.

The O(log n) upper bound construction [6, 3] is a
set S of line segments arranged so that every seg-
ment s 2 S has two endpoints on the convex hull
conv(

S
S), and therefore any alternating path con-

taining segments from both sides of s should go
through s as well. In that construction n segments
have 
(n) di�erent orientations. If all segments are
axis-parallel, we can prove a better lower bound:

Theorem 1 For any set S of n disjoint axis-parallel
segments in the plane, there is an alternating path
running through

p
n=2 segments of S.

Restricting the general upper bound construction
to axis-parallel segments, we obtain an upper bound
of O(n=2 + 2) (see Fig. 1), which leaves room for
further improvements from below or from above.
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Figure 1: Axis-parallel segments clipped to a disk.

2 Axis-parallel segments

We may assume that there are at least n=2 horizontal
segments in S. Let H , H � S, denote their set.
For two segments s 2 H and t 2 H , we say that s
supports t if there is an x-monotone and y-monotone
curve connecting a point of s to a point of t such that
it does not cross any segment of S. (This includes
the case where there is vertical visibility between s
and t.) We say that s � t i� there is a sequence
(s = s0; s1; s2; : : : ; sr = t) in H such that si supports
si+1, i = 0; 1; 2; : : : ; r�1 (Fig. 2). The relation � is a
partial order in H . (A similar order was used in [5]).

t

s

Figure 2: s � t.

By Dilworth's theorem [2], there is either (i) a chain
or (ii) an anti-chain of size

p
n=2 with respect to �.
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(We note that the size of the maximal chain and anti-
chain can be

p
n=2 simultaneously.) In either case,

we show that all segments in the chain or anti-chain
can be linked together in a common alternating path.
In case (i), let s1; s2; : : : ; sr be a sequence of r,

r �
p
n=2, segments of H such that each si supports

si+1. Denote the left and right endpoint of si by ai
and bi. Let 
(i), be the x- and y-monotone curve
connecting si and si+1 such that the two endpoints
of 
(i) are vi 2 si and wi 2 si+1 (�g. 2).

Figure 3: The initial paths �(i).

For every i, place a rubber band along the path
(aivi) [ 
(i) [ (wibi+1). Then let the rubber band
contract while its endpoints stay pinned down at ai
and bi+1 with the constraint that it cannot cross any
segment of S. The rubber band forms a polygonal
path �(i) through segment endpoints lying between
si and si+1 (Fig. 4). Notice that �(i) remain x- and
y-monotone.

Figure 4: Paths �(i) after one iteration.

Next, we expand recursively every �(i) into an al-
ternating path between si and si+1. We want to make
sure that the concatenation of the resulting r � 1 al-
ternating paths is also a simple alternating path, that
is, the r � 1 alternating paths are pairwise disjoint.
Consider a path �(i). If there is a segment ŝ which

has exactly one endpoint v(ŝ) with �(i), then we mod-

ify �(i) to go along ŝ and visit the second endpoint of
ŝ. We call this operation an expansion of �(i). The
expansion practically means that we pick the segment
of �(i) lying before or after the common vertex v(ŝ)
and pull the rubber band to the second endpoint of
ŝ with the constraint that it cannot cross any other
segment of S. We choose the directions of the ex-
pansion as follows: If ŝ is horizontal and lies on the
left (right) side of �(i) then we expand the segment
of �(i) above (below) v(ŝ). If ŝ is vertical and lies
on the left (right) side of �(i) then we expand the
segment of �(i) to the left (right) of v(ŝ) (see Fig. 4
and 5).

Figure 5: The resulting alternating path.

Inevitably, when we expand a segment of �(i) to
visit a second endpoint of ŝ, our path may hit other
segment endpoints between si and si+1. The choice
of directions of the expansion ensure that �(i) never
hits a segment endpoint that is already visited by
�(i) or a second endpoint of a segment whose one
endpoint is in �(i). We maintain two invariants:

1. Every piece of �(i) which does not lie along a
segment of S is x- and y-monotone;

2. If an ŝ has one common point v(ŝ) with �(i) and
lies on the left (right) of �(i), then v(ŝ) is its
right or lower (left or upper) endpoint.

One can show that repeating the expansion opera-
tion on the path �(i), we end up with r � 1 pairwise
disjoint alternating paths between the pairs (si; si+1).

In case (ii), note that any two segments in an anti-
chain are separated by a vertical line, therefore the
segments in the anti-chain have a linear left-to-right
order. Consider the r, r �

p
n=2, segments of an

anti-chain A = fs1; s2; : : : ; srg � H labeled accord-
ing to this order (Fig. 6). Denote the left and right
endpoint of each si by ai and bi.

Observe that si 6� si+1 and si 6� si+1 implies
that there is no x- and y-monotone curve between
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si and si+1 which avoids vertical segments but pos-
sibly crosses horizontal segments. Speci�cally, if the
y-coordinate of si is smaller than that of si+1, then
there is staircase (axis-parallel x- and y-monotone)
curve between bi and ai+1 whose every vertical seg-
ment is along a vertical segment of S (middle of
Fig. 6). Informally, this staircase curve blocks any
curve which would imply a relation si � si+1. (If the
y-coordinate of si is larger than that of si+1, there is
no speci�c condition.)

Figure 6: Linear oder in an anti-chain.

For every i, i = 1; 2; : : : t � 1, we connect bi and
ai+1 by a rubber band %(i): If bi is above ai+1 then
we �nd a monotone descending polygonal path that
can cross vertical segments but must avoid horizon-
tal segments. If bi is below ai+1 then consider the
polygonal staircase path from bi to ai+1 as described
above. In both cases, let us denote this polygonal
path by %(i) (dashed in Fig. 6).

Figure 7: The initial curve %(i) with monotone de-
scending visibility edges.

Recursively, at every intersection point of %(i) with
a vertical segment vw, we force the rubber band %(i)
to pass through v and w such that %(i) is ascending
along vw. In this way, we obtain a curve �(i) that
does not cross any segment of S and whose pieces not
lying along segments of S are x-monotone increasing
and y-monotone descending.

Finally, we expand recursively every �(i) into an al-
ternating path between bi and ai+1 using the similar
expanding operations as in case (i). Consider a seg-
ment ŝ 2 S with one common point v(ŝ) with �(i). If
ŝ is horizontal and lies on the left (right) side of �(i)
then we expand the segment of �(i) below (above)
v(ŝ). If ŝ is vertical and lies on the left (right) side of
�(i) then we expand the segment of �(i) the the left
(right) of v(ŝ) (Fig. 8).

Figure 8: Winding the rubber band around obstacles.

We can maintain similar invariants as in case (i)
(now, portions of �(i) not lying along segments of S
are monotone descending). One can show that the
expansion of �(i) does not touch any segment end-
point twice, every resulting path is simple. The in-
variants also ensure that all r�1 resulting alternating
paths are pairwise disjoint. This completes the proof
of Theorem 1.
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