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Abstract

We consider the problem of a searcher that looks for
a lost flashlight in a dusty environment. The search
agent finds the flashlight as soon as it crosses the ray
emanating from the flashlight, and in order to pick it
up, the searcher has to move to the origin of the light
beam.

First, we give a search strategy for a special case
of the ray search—the window shopper problem—,
where the ray we are looking for is perpendicular to
a known ray. Our strategy achieves a competitive
factor of ≈1.059, which is optimal. Then, we consider
the search for a ray with an arbitrary position in the
plane. We present an online strategy that achieves a
factor of ≈22.513, and give a lower bound of ≈16.079.

Keywords: Online motion planning, competitive ra-
tio, searching, ray search

1 Introduction

Searching in an unknown environment is a basic task
in robot motion planning and well-studied in many
settings. For example, Gal and independently Baeza-
Yates et. al. [7, 2] considered the task of finding a
point on an infinite line using a searcher, that starts
in the origin and neither knows the distance nor the
direction towards the goal. They introduced the so
called doubling strategy that is, the agent moves al-
ternately to the left and to the right, doubling it’s
exploration depth in every iteration step. Search-
ing on the line was generalized to searching on m
concurrent rays starting from the searcher’s origin,
see [7, 2]. Many other variants were discussed since
then, for example m-ray searching with restricted
distance (Hipke et. al. [9], Langetepe [13], Schuierer
[14]), m-ray searching with additional turn costs (De-
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maine et. al. [4]), parallel m-ray searching (Hammar
et. al. [8]) or randomized searching (Kao et. al. [11]).

The quality of a strategy that deals with incomplete
information —an online strategy—is usually measured
by the cost of the online solution compared to the
optimal solution. More precisely, let |S| denote the
cost of an online strategy, S, and |SOpt| the cost
of the optimal solution, then we call S competitive

with factor C, iff there exists a constant A such that
|S| ≤ C · |SOpt|+A holds for every input to S. In our
case, the costs incurred by a search strategy is given
by the length of the path covered by the searcher, and
the optimal solution is the length of the shortest path
from the searcher’s origin to the goal. The competi-
tive framework was introduced by Sleator and Tarjan
[17] and used for many settings, see e. g. the survey
by Fiat and Woeginger [5]. For a general overview of
online motion planning problems and its analysis see
the surveys [3, 15, 16, 10]. Another measure is the
search ratio, see Koutsoupias et. al. [12] and Fleischer
et. al. [6]

In this paper, we consider the search for the ori-
gin of a ray in the plane. The searcher has no vision,
but recognizes the ray and it’s origin as soon as it en-
ters it. First, we consider a simplified version of this
problem: the origin of the ray, r, we are looking for
is located on another ray, r′, perpendicular to r. The
searcher’s start point and r are located on the same
side of r′. Moreover, r′ is known. We call this problem
the window shopper problem, since we can imagine r′

as a line of shopping windows. A buyer walks along
these windows, looking e. g. for a present, and walks
towards the window as soon as an appropriate item
is spoted. We give a search strategy for this prob-
lem, that achieves an optimal competitive factor of
1.059 . . . Then we consider the general case, and give
a search strategy that achieves a factor of 22.513 . . .
and give a lower bound of 16.079 . . .

2 The window shopper problem

First, we consider the problem of finding a gift along a
line of shopping windows. W. l. o. g. we assume, that
the line of sight, i. e. the ray r we are looking for,
is parallel to the X-axis, starting in (1, yr) for yr ≥
0, and emanating to the left hand side of r′. The
searcher starts in the origin (0, 0), see Figure 1. The
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Figure 1: A strategy for the window shopper problem.

goal is discovered as soon as we reach its height, i. e.
its Y -coordinate yr. In order to reach the goal we
finally have to move towards it (if we haven’t reached
it by coincidence).

Theorem 1 There exists a strategy with an optimal

competitive factor of 1.059 . . . for searching the ori-

gin of a ray, r, that emanates from a known ray r′

perpendicular to r.

Proof. Apparently a good search path moves simul-
taneously along and towards the wall, i. e. in posi-
tive X- and Y -direction. It is obvious that the com-
petitive factor converges to 1 for goals with very
small Y -coordinate and also for goals with a large
Y -coordinate. Using this properties, we construct the
following search strategy, Π: First, we follow a line
segment. In the second part we follow a curve f(x)
that converges to the wall and maintains the value of
the competitive factor given by the line segment at
the beginning of the search path, see Figure 1.

By specifying the first part of the search path as
the line segment from the origin to a point (a, b) we
can describe the competitive factor as a monotone
increasing function φ(t) with

φ(t) =
t
√

a2 + b2 + 1 − ta√
1 + t2b2

,

and φ′(t) ≥ 0 ∀t ∈ [0, 1]. Hence, b ≤
√

1 − 2a follows.
From now on we assume b =

√
1 − 2a and therefore

a = 1−b2

2 .
Now we are looking for a curve f(x) that maintains

the value

δ =

√
a2 + b2 + 1 − a√

1 + b2
=
√

1 + b2

for the competitive factor.
This means that the length of the whole search

path, i. e. the line segment(s) and the curve, is δ times
the Euclidean distance from the origin to the goal.

Solving the resulting differential equation of the
form
√

a2 + b2+1−x+

∫ x

a

√

1 + f ′(t)2 dt = δ ·
√

1 + f(x)2

yields the values b = 0.349 . . . and δ = 1.059 . . .
To show the optimality of the given strategy, we

observe an arbitrary curve g(x) starting at the origin.
Then we have to consider two cases.

Case 1: g reaches height b left to a.
If the goal is at height b then g has a competitive fac-
tor which is worse than our competitive factor. This
also holds for goals above b, because the curve f has
already reached its maximum value at (a, b).

Case 2: g reaches height b right to a.
Then the curve g intersects the curve f at some in-
tersection point A; at the latest when the curve f
reaches the wall. In this case the length of the path
on g is longer than the path on f (since f is monotone
increasing and convex), so the competitive factor of g
is again worse than the factor of f in A. �

3 Searching for a ray

Now, we suppose that we are positioned somewhere
in the plane and we want to find an arbitrary ray.
It seems to be a good strategy to search for the ray
by moving on a logarithmic spiral. Since we have no
sight the ray is only found when we cross it. Our aim
is to reach the origin of the ray—simply by following
the ray after we have found it.

We are interested in the worst case. This means
that we want to construct a position of the ray that
maximizes the competitive factor. Since we want to
search the ray by moving on a spiral, we are looking
for a spiral that minimizes the worst case in the plane.

The spiral is given by equation

f(θ) = aebθ , −∞ < θ < ∞.

Due to the properties of the spiral, we only have to
consider positions of the ray in one turn (2π).

t

S

B A

M

Figure 2: The tangent t to the spiral in point B.

One can easily see that the competitive factor
reaches a local maximum if the ray is a tangent t
to the spiral: Let B now be the tangent point of t,
see Figure 2. The ray is missed in point B and de-
tected in point S. We examine different positions of
the ray’s origin on the tangent. The starting point
can not be on the left side of B, because otherwise
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the ray would no longer be a tangent. The compet-
itive factor reaches a higher value for A than for B,
see Figure 2, because A is farther away from S than
B and

∣

∣MA
∣

∣ is shorter than
∣

∣MB
∣

∣.
First, we will find the best spiral for a point A, so

that
∣

∣MA
∣

∣ is perpendicular to tangent t.

Lemma 2 The competitive factor δA for the point A,

so that
∣

∣MA
∣

∣ is perpendicular to the tangent t, only

depends on the spiral parameter b and is given by

δA(b) =
eb(2π+β(b))

sinα · cosα
+

eb(2π+β(b)) · sin(β(b))

sin2 α
+ b .

Its minimum value is 22.4908 . . . for b = 0.1137 . . .,
where α is the tangent angle and β the angle ∠BMS.

Now we will show, that this b also gives us the
optimal spiral for all tangents and all origins. This
can be shown as follows. The adversary can move
the point A to A′ which gives a factor of δA′(b, γ) =
cos γ ·δA(b)+sinγ by simple geometry (see Figure 3).

M

B
A

A′

γ

Figure 3: The triangle MAA′.

Therefore in general we have to minimize δA(b)
whereas the adversary can choose the worst case γ.
By simple analysis we have:

Theorem 3 The best worst case competitive factor

is 22.5130 . . . This value is reached by point A′ which

is specified by γ = 0.4443 . . . and b = 0.1137 . . .

Due to space limitations we omit the proofs of
Lemma 2 and Theorem 3. See the full version of the
paper.

4 A lower bound for searching a ray

We discuss a subproblem and consider a subset of
rays, such that the extension of every ray goes through
the starting point s.

If we consider the full bundle of lines passing
through s, the given problem is equivalent to the prob-
lem of searching for a point in the plane as presented
by Alpern and Gal [1]. We assume that the goal is
detected, if it is swept by the radius vector of the tra-
jectory. Alpern and Gal [1] showed that among all
monotone and periodic strategies, a logarithmic spi-
ral represented by polar coordinates (γ, ebγ) gives the
best search strategy in this setting. A strategy S rep-
resented by its radius vector X(γ) is called periodic

and monotone, if γ is always increasing and X also
satisfies X(γ + 2π) ≥ X(γ).

The factor of the best monotone and periodic strat-

egy is given by minb e2πb
√

1 + 1
b2

= 17.289 . . . and

achieves its minimum for b = 0.15540 . . ., see Alpern
and Gal [1]. Note, that the task does not include that
the origin of the ray has to be visited.

Unfortunately, it was not shown that a periodic
and monotone strategy is the best strategy for this
problem. Alpern and Gal state, that it seems to be a

complicated task to show that the spiral optimizes the
competitive factor. Thus, the given factor cannot be
adapted to be a lower bound to our problem.

Therefore we consider a discrete bundle of n rays
that emanate from the start and which are seperated
by an angle α = 2π

n
, see Figure 4. We are searching for

a goal on one of the n rays. Again the goal is detected
if it is swept by the radius vector of the trajectory.
Note, that if n goes to infinity we are back to the
original problem. But we can neither assume that we
have to visit the rays in a periodic order nor that the
depth of the visit increases in every step.

α

xk+2 βk+1xk+1

xk+1

xk

βkxk

Figure 4: A bundle of n rays and the representation
of a strategy.

Therefore we would like to make an approxima-
tion and represent a strategy as follows. At the k-
th step, we hit a ray, say ray i, at distance xk and
leave the ray at distance βkxk with βk ≥ 1. There-
fore we move a distance βkxk − xk along the ray i
and then we move to the next ray within a distance
√

(βkxk)2 − 2 cos(α)βkxkxk+1 + (xk+1)2, see Figure
4. Let us assume that the ray i for xk and βkxk is vis-
ited the next time at index Jk. The worst-case occurs
if we did not see the goal at the ray i up to distance
xk and find the goal at step xJk

on i arbitrarily close
behind βkxk. The competitive factor is bigger than

1

βkxk

(

xJk
− βkxk +

Jk−1
∑

i=1

βixi − xi

+
√

(βixi)2 − 2 cos(α)βixixi+1 + (xi+1)2

)

,

where xJk
− βkxk denotes the movement to goal.
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By simple trigonometry the shortest distance from
βkxk to a neighboring ray is given by βkxk sin

(

2π
n

)

.
Fortunately, this distance is smaller than the distance
√

(βkxk)2 − 2 cos(α)βkxkxk+1 + (xk+1)2 to any other
ray. Therefore a lower bound on the above worst-case
factor is given by

−1 +

∑Jk−1
i=1 βixi sin

(

2π
n

)

βkxk

Altogether, we have to find a lower bound for
PJ

k
−1

i=1
βixi

βkxk
where Jk always denotes the next visit of

the ray of xk. Fortunately, this problem also repre-
sents the competitive analysis for the m ray problem
where we can only move along the rays. It was shown
by [7] and [2] that for this problem there is an optimal
strategy that visits the rays with increasing depth and
in a periodic order, that is Jk = k +n and i = k. The
best strategy is given by fi = (n/(n−1))i. Altogether,
this results in a function

(n − 1) sin

(

2π

n

)(

n

n − 1

)n

for n rays. We can make n arbitrarily big because
our construction is valid for every n. Note, that we
also have a lower bound for the problem of searching
a point in the plane, the lower bound is close to the
factor of the spiral.

Theorem 4 For the ray search problem there is no

strategy that achieves a better factor than

−1+ lim
n→∞

(n−1) sin

(

2π

n

)(

n

n − 1

)n

= −1+17.079 . . .

Additionally, every strategy for searching a point in

the plane achieves a competitive factor bigger than

17.079 . . . and the optimal spiral achieves a factor of

17.289 . . .

5 Conclusion

We considered the problem of searching a ray and its
origin under the competitive framework.

If the ray starts on a known ray r′ and is also per-
pendicular to r′ we will find the origin within a path
length of 1.059 . . . times the shortest path to the ori-
gin. This factor is optimal.

In general a logarithmic spiral solves the task within
a competitive factor of 22.51 . . . whereas a lower
bound of 16.079 . . . is given.

The lower bound construction can also be used if
it is not necessary to visit the origin and if the corre-
sponding line of every ray goes through the starting
point. For this sub-problem a competitive strategy
with factor 17.289 . . . was already known. We can
proof that there is no strategy with a factor better
than 17.079 . . . in this setting.

There are still some gaps between the lower and
upper bounds of the factors which have to be closed.
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