
Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik I

Birgit Engels1 Tom Kamphans2

On the Complexity of

Randolph’s Robot Game

Technical Report 005

December 2005

1Zentrum für angewandte Informatik, University of Cologne, Germany
2Universität Bonn, Institut für Informatik, Abt. I, Römerstr. 164, D-53117 Bonn





Abstract

We introduce a type of movement constraints for a swarm of robots
in a grid environment, which is inspired by Alex Randolph’s board
game Ricochet Robot and new to the field of robot motion planning.
This type of movement may be used to model robots with very limited
abilities for self localization: We assume that once a robot starts to
drive in a certain direction, it does not stop its movement until it hits
an obstacle wall or another robot. We give some lower bounds on the
number of robots needed to reach every cell. Especially, it is easy to
see that three robots are necessary and sufficient to reach every cell in
a simple rectangular environment. Further, we consider the question,
whether a certain cell can be reached is in arbitrary environments.

A Java applet for simulating robot swarms moving with these con-
straints can be found in

http://www.geometrylab.de/RacingRobots/

Key words: Robot navigation, unknown environment, navigation er-
ror, robot swarms, NP-hardness, PSPACE-completeness.

1 Introduction

Robot motion planning has received a lot of attention both in computational
geometry and in robotics; see, for example, the surveys [16, 29, 21, 31, 5,
13, 26, 18], or the books [30, 25, 32, 9].

In this paper, we consider a quite simple model for the robots and their
environment: The robots are short sighted and the surrounding is subdi-
vided by a rectangular integer grid; that is, the robots move in a cellular
environment, similar to a chessboard or squared writing paper.

Environments with a grid structure were considered in different settings.
Icking et al. [20] studied the exploration problem (also known as covering) of
a simple grid polygon (i.e., a polygon with no obstacles inside). They gave a
lower bound of 7

6
and a 4

3
- competitive exploration strategy for this problem.

The case of a polygon with obstacles was considered by Icking et al. [17, 19]
—see also [23]—and independently by Gabriely and Rimon [12]. Itai et
al. [22] showed that the corresponding offline problem is NP-hard. Betke
et al. [6] and Albers et al. [1] studied the piecemeal exploration problem,
where the robot has to return to the start cell every now and then. Cellular
environments were also considered from a more practical point of view; see,
for example, Moravec and Elfes [27, 10], or Zelinsky et al. [8].

Swarms of robots have been studied intensely. See, for example, the
works of Bruckstein et al. [7] or Amato et al. [2]. Arkin et al. considered the
freeze-tag problem (i.e., the question how to ’wake up’ an initially inactive
swarm of robots) [4] and the dispersion of a swarm of robots [3].

Another interesting model for robots moving around in cellular envi-
ronments was inspired by the board game Ricochet Robots by Alex Ran-

1



Figure 1: The board game Ricochet Robots by Alex Randolph.

dolph [28], see Figure 1. The game consists of four robots in different colors,
several marker chips, and a game board showing some obstacles and some
cells marked with different symbols. Initially, the robots are placed ran-
domly on the board and the markers are hidden. In every turn one of the
markers is drawn. The players try to figure out the smallest number of
moves that are necessary to move the robot in the revealed color to the cell
with the revealed symbol. The interesting part of the game are the rules to
move a robot: A robot can move in one of the four directions (north, east,
south, or west), but once it has chosen a direction it continues to move in
this direction until it hits an obstacle or another robot. Thus, it is often
necessary to move robots that serve as guides to stop the movement of an-
other robot on an appropriate cell. See, for example, Figure 2: The task is
to move the robot ⊗ to the cell marked with 3. To permit this movement,
the robot ⊕ has to move to a, so three moves are necessary to solve the task.
Of course, the player that finds the minimal number of movements wins the
turn.

This model can be used for a swarm of robots. Each of them has a very
restricted orientation: Even if the robots have a map of their environment,
a robot that touches a wall knows only, which wall in the environment it
touches, but as soon as the robot leaves the wall it has no chance to locate
itself. Therefore, it continues its movement until it hits another wall or
another robot. However, the robots are able to communicate with each

2



a⊗

3

⊕

Figure 2: Example: the robot ⊕ has to move to a to allow the robot ⊗ a
movement to 3.

other, or all of them are controlled by the same computer. Apart from the
best strategy to solve Randolph’s game, an interesting question is, whether
there is an upper bound for the number of robots, such that every cell can
be reached by at least one robot. In this report, we show—after a formal
definition for the robots and their environment in Section 2— upper bounds
for some rather simple configurations in Section 3.

The major contribution is the NP-hardness proof for the reachability
problem in arbitrary environments that we give in Section 4. Moreover, this
result can be extended to PSPACE-completeness by an analogy to the game
which was independently analysed by Hüffner et al. [15], and Holzer and
Schwoon [14].

2 Preliminaries

We assume that the robot’s environment is subdivided by a rectangular
integer grid, see Figure 3.

(ii)(i)

Figure 3: (i) Polygon with 23 cells and one hole (black cells) inside, (ii)
the robot can determine which of the 4 adjacent cells are free, and enter an
adjacent free cell.

We call a reachable basic block in the environment a cell, and the set
of all cells that can be reached by the robots a grid polygon, or polygon for
short. An unreachable block is called an obstacle or hole. We call a polygon
simple, if it has no holes inside.

We assume that the environment is populated by a system, R, of N

3



robots, r1, . . . , rN . The robots start either from a common start cell1, s, or
from a given start configuration, S = (s1, . . . , sN ), inside the polygon. The
sensors of a robot provide the information, which of the four neighbors of
the currently occupied cell belong to the polygon and which ones do not.
Further, the robot is able to recognize neighboring cells occupied by another
robot. A robot can enter an unoccupied polygon cell, but once it started to
drive in a certain direction, it will continue the movement until it hits a wall
(i.e., an obstacle) or another robot. We assume that in any point of time at
most one robot moves.

In spite of the very basic sensors, the robots are either able to commu-
nicate with each other or they are steered by a common controlling unit.
However, the robot system R provides enough memory to store a map of
the environment and some additional information.

3 Upper bounds on the Number of Robots

If there are passages of width 1 in the environment, we can “trap” robots.
See, for example, Figure 4(i): The polygon includes a corridor of width 1,
and we need dk

2
e + 1 robots starting in s before t is reached—one robot in

a and dk
2
e robots to “fill” the corridor from the left or from the right. Note

that we need one robot located in the cell b before another robot is able to
reach a, but the robot in b can be used again after a is occupied.

b

(i) (ii)

s

a

k

s

t

k

a

t

Figure 4: In both cases, dk
2
e+1 robots are necessary to reach t: one located

in a, and dk
2
e to “fill” the corridor.

Even if we have a simple polygon, corridors of width 1 may cause the
need for an arbitrary number of robots, see Figure 4(ii): We need also dk

2
e+1

robots starting in s to occupy t. But what happens, if the polygon does not
have such narrow passages? Are there still polygons that need an arbitrary
number of robots, or is there an upper bound? So far, only the following
upper bound is known.

1In this case, we imagine the robots enter the polygon successively through a door in
the wall or in the floor.

4



a1 a2 a3

(0, 0)

c4 c3

Y
X

c2

n

m

b1

b2

b3

t

bai s′

s

c1

Figure 5: t can be reached with O(n + m) steps using 3 robots.

Lemma 1 Given a rectangle of size m×n, m,n > 1, without holes inside,

every cell can be reached using at most three Randolph robots with O(m+n)
moves.

Proof. Consider an arbitrary start cell, s, and an arbitrary target, t =
(x, y), see Figure 5. W.l.o.g. we assume that x ≤ dm

2
e and y ≥ dn

2
e holds;

otherwise, we choose another cell than c1 in the following.
We reach t using the following strategy. In the first stage, we place one

robot to mark the column containing t: The first robot moves from s via
s′ to c1 with 2 moves, the second robot moves from s to a1. Now, the first
robot moves via c4, c3 and c2 to a2, the second robot moves a similar path
to a3. This continues, until eventually one of the two robots has reached the
cell ai. With the help of the robot in ai we can proceed vertically to t: The
other robot moves via c3, c2 and b to b1. Now, we need a third robot that
moves via s′ and b to b2, and the robot located on b1 is now free to move to
b3. We proceed in this way until we reach t. It is easy to see that we use no
more than 4dm

2
e moves to occupy the cells ai and b, and no more than 4dn

2
e

further moves to reach t, yielding O(n + m) moves. 2

So far, we were not able to give an upper or lower bound for the number
of robots needed in more complex environments (without holes inside and
without corridors of width 1). Although it is possible to increase the lower
bound slightly by introducing “traps” that have to be guarded by additional
robots (marked with ⊕ in Figure 6), it is not possible to repeat this con-
struction in a recursive way to show an unbounded number of needed robots.
We can add traps to the traps, but as the number of robots increases, we
have enough robots to “rescue” the guards inside a trap that are no longer
needed if a guard is placed in ⊕.

5



Trap

⊕

⊕

⊕

Trap

Trap

Trap

⊕

Figure 6: An attempt to increase the lower bound.

4 Reachability in Arbitrary Polygons

Now, we consider the following problem, the Reachability Problem:

Given an arbitrary grid polygon, P , a system of N Randolph

robots, r1, . . . , rN , a start configuration, S = (s1, . . . , sN ), and a
target cell, t. Is one of the robots able to reach t—probably with
the help of the other robots?

In this section, we show that the Reachability Problem is NP-hard by
reducing the well known satisfiability problem with three literals per clause
(3SAT) [24] to the Reachability Problem. Let us recall the 3SAT Problem:

Given a boolean expression, α, consisting of m clauses, C1, . . . , Cm,
over n variables, X1, . . . ,Xn, where each clause consists of three
literals; that is:

α = C1 ∧ . . . ∧ Cm

with Ci = (Li1 ∨ Li2 ∨ Li3) and Lij ∈ {X`,¬X`; 1 ≤ ` ≤ n } .

Is there a truth assignment for X1, . . . ,Xn such that α is fulfilled?

Let us first give a brief outline on the reduction: We construct a polygon,
P (α), depending on α. Our robot system, R, consists of n + 1 robots,
rt = r0, r1, . . . , rn, where n is the number of variables in the 3SAT instance.
Each robot ri, 1 ≤ i ≤ n, represents the variable Xi and its truth assignment.
Thus, we call these robots literal robots. Each of them starts in a special
fork-shaped (sub-)polygon called fork polygon fpk, see Figure 7, and chooses
the truth assignment of Xi immediately after leaving its start cell. The
robot r0 plays a special role: it starts on a special start cell, s = s0, and

6



its purpose is to reach t. Thus, we refer to this robot as rt. Note, that
rt is the only robot that may reach t, if t is reachable at all. Further, we
construct for every clause Ci in α a corresponding (sub-)polygon called the
clause polygon cpi, see Figure 8. The robot rt may pass a clause polygon
if and only if the clause polygon is visited by at least one of the literal

robots corresponding to the literals in Ci. This, in turn, is only possible, if
the clause Ci in α is fulfilled. We use a bus-like structure to connect the
fork polygons to the clause polygons and to construct P (α).This structure
ensures that a clause polygon can be visited only by robots that have chosen
the adequate truth assignment. For convenience, we use corridors of width
1 in our constructions. It is easy to widen these corridors, so our results
hold even if we do not allow corridors of width 1.

OUTXk

sk

OUT¬Xk

Figure 7: A fork polygon.

Fork Polygons

We start our more precise description with the fork polygons, see Fig-
ure 7. Starting from sk in fpk, a literal robot rk may move to the left or to
the right several times without further effect. But as soon as it moves up or
down in one of the vertical passages, it needs another robot (or an obstacle)
to allow a change in its direction of movement on one of the cells where the
horizontal and vertical corridors intersect. The bus structure ensures that
no other robot r`, ` 6= k, may enter fpk; thus, it is impossible for the robot
rk to return to sk and to enter the other vertical passage. This property
of the fork polygon ensures the consistency of the truth assignment for the
variables in α: As mentioned earlier, a literal robot rk is identified with one
variable Xk. Now, we are able to assign a truth value to Xk corresponding to
the vertical corridor that rk enters. By convention, we assign Xk := 1 if the
robot enters the left-hand vertical passage of the corresponding fork poly-
gon, and Xk := 0 otherwise. We denote the former passage with Xk-passage

and the latter with ¬Xk-passage of fpk. Altogether, we have

Lemma 2 The truth assignment of the variables that is derived from the

movement of the literal robots is consistent.

7



×

×

• ◦

di3

OUTclause

di2di1

INXi1

OUTXi1

INXi2

OUTXi2

INXi3

OUTXi3

×

×

×

×

×

×

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•

×

×

INclause

×

•

×

×

×

Figure 8: A clause polygon.

Clause Polygons

Now, let us consider the clause polygons. A clause polygon cpi, 1 ≤ i ≤
m, has eight connections to other parts of P (α). The connection between
the subpolygons of P (α) ensures that only rt may enter a clause polygon
via INclause and leave via OUTclause. Moreover, a literal robot rk may enter
the clause polygon via INij, 1 ≤ j ≤ 3, if and only if the variable Xk occurs
in the corresponding clause Ci and the robot has chosen the correct truth
assignment. More precisely, a robot rk may enter cpi, if it represents Xk = 1
and Xk is a literal in Ci, or if it represents Xk = 0 and ¬Xk is a literal in
Ci. Moving south into cpi, a robot rk stops on a cell dij marked with an
arrow in Figure 8. Now, rk is able to enter one of the horizontal passages
marked with ◦. Note that rk is not able to leave the clause polygon without
the help of at least two other robots once it left the cell dij in a horizontal
direction. The bus structure ensures that these cells can be reached only
by the robot rt and at most one variable robot (see Lemma 4); thus, rk is
trapped if it leaves dij in a horizontal direction.

Now, let us assume that rk does not leave dij , and rt moves from INclause

of our clause polygon to the same corridor, where rk is already positioned.
The robot rt will stop in front of rk and can change its direction to enter
the vertical passage marked with × in Figure 8 leading to OUTclause. The
basic property of the clause polygons is the following:

Lemma 3 The robot rt may pass a clause polygon from INclause to OUTclause

if and only if the corresponding clause in α can be fulfilled.

8



Proof. First, we show that rt cannot pass the clause polygon without
further help of other robots: Entering cpi through INclause, the robot rt may
reach one of the three horizontal passages marked with ◦ in Figure 8; all
of them provide a connection to OUTclause by the vertical passages marked
with ×. But rt is not able to enter the latter passages because of our special
motion behavior: There is no obstacle in one of the cells dij (marked with
an arrow) that would allow rt to alter its moving direction.

Only if dij is occupied by another robot rk, the robot rt may stop on
one of the cells marked with • and reach OUTclause. But a literal robot rk

reaches dij only if Xk is a literal in Ci and rk has chosen the correct a truth
assignment corresponding to the type of the literal; that is, if and only if Ci

is fulfilled. 2

Connections

In the last step of the construction, we arrange and combine the clause
and fork polygons to one polygon P (α): We arrange the clause polygons one
beneath the other on the left-hand side of P (α) and the fork polygons side by
side on top of P (α), each of them with sufficient space for the connections,
see the example in Figure 9. Then, we consecutively connect all clause
polygons by a passage. More precisely, for 1 ≤ i < m we connect OUTclause

of cpi and to INclause of cpi+1. Further, we connect INclause of cp1 to the
start cell s0 of rt and OUTclause of cpm to the target cell t. Thus, rt has to
pass consecutively all clause polygons.

Now, we connect the fork polygons to the clause polygons: First, we
extend the Xk-passages and the ¬Xk-passages of the fork polygons to the
south until they reach the last clause polygon. Thus, we have 2n vertical
corridors parallel to the column of clause polygons. Each of these corridors
end in a blind alley.2 Then we add connections from this bus structure to
the clause polygons: If Xk is the jth literal in the clause Ci of α, we divert rk

from the Xk-passage via INXij
through cpi and via OUTXij

back to the Xk-
passage. Remark that we add an obstacle cell to the Xk-passage between
the horizontal connections to the clause polygon. Analogously, if ¬Xk is
the jth literal, we connect INXij

and OUTXij
to the ¬Xk-passage. Note

that the passages are mostly separated by obstacles—the only exceptions
are crossings of connecting passages. But these crossings do not matter:3

Lemma 4 A literal robot, rk, stays in its Xk- or ¬Xk-passages, after it

left the fork polygon. Further, rt cannot reach one of these passages.

2Regarding the construction time, we would like a single reading of α to be sufficient
for the building of P (α). Since we cannot determine which of the clause polygons has to
be connected to which passage, the extension up to the last clause polygon guarantees the
access to every passage for every clause.

3Recall that no two robots move simultaneously.

9



Proof. All literal robots rk start from different cells sk, and enter different
vertical passages leading to clause polygons and dead ends. Only the clause
polygons connect two different passages, because no robot is able to stop
at a crossing between connecting passages and, thus, no robot can change
its direction in such a crossing in order to enter another passage. Entering
a clause polygon cpi by INXij

, a robot rk moves to one of the horizontal
passages marked with ◦ in Figure 8. Inside a clause polygon, a robot rk

may meet only the robot rt. However, it is easy to see that rk cannot
enter another horizontal passage or possibly even leave cpi via OUTclause or
INclause, and rt cannot leave cpi via one of the OUTXij

. Further, there is
only one configuration such that rk can return to its passage by OUTXij

and rt can leave cpi through OUTclause. This holds for every rk; thus, no
literal robot can leave the passage it has chosen (i.e., either the Xk- or the
¬Xk-passage). 2

The second important property of our connections concerns the reacha-
bility of t:

Lemma 5 The robot rt is the only robot that may reach t.

Proof. To reach t, a robot must at least pass the last clause polygon in our
construction, because there is no other connection to t. As we have seen
earlier, no literal robot rk can leave a clause polygon through OUTclause;
thus, only rt may reach t. 2

Example

Let us consider the example shown in Figure 9: The left part of the
construction consists of two clause polygons,4 cp1 and cp2, corresponding
to the clauses C1 and C2 of α. Both clause polygons are connected by a
passage from OUTclause of cp1 to INclause of cp2. The start cell s0 for rt

is attached to INclause of cp1 and the target cell t accordingly to OUTclause

of cp2. The upper right part of the figure shows the five fork polygons
corresponding to the variables X1, . . . ,X5 and containing the start cells sk

for the five literal robots r1, . . . , r5. Between these components we have the
bus-like connecting passages: The first literal in C1 is X1. Thus, we add grid
cells to connect the X1-passage to cp1 via INX11

and OUTX11
. Analogously,

INX12
and OUTX12

are connected to the X2-passage and so on. Note that
INX21

and OUTX21
are connected to the ¬X1-passage, because the literal

X1 is negated in C2.

4For convenience, both clause polygons are shown as black boxes. The interior of these
boxes is shown in Figure 8.

10



C2 = ¬x1 ∨ x4 ∨ ¬x5

C1 = x1 ∨ x2 ∨ x3

t

s

s1 s2 s3 s4 s5

cpi

fpk

Figure 9: Construction example for P (α) corresponding to α = C1 ∧ C2 =
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ ¬x5).

Truth Assignment

The preceding explanations lead to the basic idea of our proof: If t

is reachable by rt, rt must pass every clause polygon. At the same time
rt reaches a clause polygon cpi, at least one literal robot rk must enter cpi.
This corresponds to the conditions to fulfill α: The truth assignment derived
from the literal robots that enter the clause polygons ensures that there is at
least one literal fulfilled in every clause. Further, all clauses are connected
in a serial way, which corresponds to the conjunction of clauses in α. Thus,
we can state:

Lemma 6 There is a truth assignment that fulfills α, if and only if t is

reachable by R in P (α).

Proof. If t is reachable at all, by Lemma 5 it is reached by rt. To reach t, rt

has to pass consecutively every clause polygon of P (α), because the clause
polygons are connected in a serial way. By Lemma 3 (and Lemma 4), rt can
pass a clause polygon if and only if the corresponding clause in α is fulfilled.
On the other hand, any given truth assignment that satisfies α fulfills at

11



least one literal for every clause of α; thus, for every clause polygon in P (α)
there is at least one literal robot able to enter it. Altogether, rt is able to
pass every clause polygon and reach t. If t is not reachable, there is at least
one clause polygon cpi that is not reached by one of the literal robots; thus,
the clause Ci—and likewise α—cannot be fulfilled. 2

Running Time

So far, we did not observe the running time needed for the construction of
P (α). It is easy to see that this construction takes time linear in the number
of cells in P (α), which, in turn, is polynomial in the size of α: There are m

clause polygons in P (α)—one for every clause in α— and n fork polygons,
where n is the number of variables in α. The number of cells used for
a clause and a fork polygon as well as a connection between two clause
polygons is constant. Thus, we have O(m + n) cells so far. Concerning the
connecting passages of P (α), we have two vertical passages (Xk- and ¬Xk-
passage) of length O(m) for every variable in α in the bus-like structure,
which are interrupted by horizontal passages leading to and coming from
the clause polygons. Every clause polygon provides six of these passages.
The vertical segments of these passages are bound by a constant, but the
horizontal segments depend on the width of the whole construction and, in
turn, by the number of variables. Thus, we have to charge a construction
time in O(mn) for the connection between fork and clause polygons, but
this time is still polynomial in the size of α. Altogether, we have:

Theorem 7 The Reachability Problem is NP-hard.

5 Complexity of the Reachability Problem

Despite the proof of Theorem 7 the actual complexicity of the Reachability
Problem stated by Randolph’s robot game remained open until the discovery
of some analogy to the game Atomix, a solitaire game invented by Günter
Krämer in 1990. The task is to assembly the initially scattered atoms of a
special target molecule in a grid polygon similar to the environment of the
Randolph robots.

Inspired by the motion behaviour of matter in free space, the single
atoms move according to the same rules as the Randolph robots. The main
differences between the task of an Atomix player and the solution to our
Reachability Problem are the following:

• Instead of one given target cell to be reached by any of the robots,
there is a target cell for each atom—implicitly given by the target
molecule.

12



• The target cells for the atoms are no fixed cells in the grid polygon, but
are given relative to the other atoms due to the neighboring relation
defined by the target molecule.

• The atoms may be of a different type (Hydrogen, Oxygen, Carbon,
etc.) and therefore not exchangable with regard to their target cells.

Although these may be considered major differences, the results of Hüffner
et al. [15] as well as Holzer and Schwoon [14] showing that Atomix is
PSPACE-complete can be fully applied to our Reachability Problem.

To proof the PSPACE-hardness of Atomix, Holzer and Schwoon con-
struct an Atomix instance simulating a finite automaton by employing de-
vices which resemble our fork and clause polygons and also make extensive
use of blind alleys. Furthermore these automaton instances can be com-
bined to a reduction of the nonemptiness intersection problem for n finite
automata which is known to be PSPACE-complete.

We make a few remarks regarding the differences between the Atomix
definition and the Reachability Problem mentioned above: Holzer and Schwoon
use an artificial target molecule consisting of only two types of atoms (2 hy-
drogen atoms and n oxygen atoms). The hydrogen atoms are placed in a
simple subpolygon called reaction chamber, which they cannot leave. Thus
the position of the target molecule and therefore the specification of the tar-
get cells is fixed to some extend. Moreover all remaining atoms which still
need to reach their target cells are of the same type and therefore resemble
a swarm of Randolph robots. To gain a Reachability Problem with a sin-
gle target cell from the constructed Atomix instance, we can—in terms of
Atomix—simply take a water molecule (H=O=H) for target molecule, but
improve the interior of the reaction chamber in such a way that all other
oxygen atoms (or rather Randolph robots in this context) are needed to
enable one of the oxygen atoms to reach its target position.

In terms of Randolph’s robot game, we consider the grid polygon from
the reduction of Holzer and Schwoon and exchange all oxygen atoms at their
initial positions with Randolph robots to get a swarm R = (r1, . . . , rn) and
a start configuration S = (s1, . . . , sn). We abandon the hydrogen atoms.
Afterwards we place a subpolygon P (α) into the reaction chamber, where

α = (x1 ∨ x1 ∨ x1) ∧ (x2 ∨ x2 ∨ x2) ∧ . . . ∧ (xn−1 ∨ xn−1 ∨ xn−1)

and P (α) is constructed as explained in Section 4.5 Thus, we get an instance
of the Reachability Problem with a swarm of n Randolph robots and a single
target cell which can be reached by rn if and only if all n robots reach
their seperate entrances to the reaction chamber. As the latter condition is
also required for the reduction presented by Holzer and Schwoon and the

5
P (α) can of course be simplified due to the special instance α; nevertheless our con-

struction of P (α) satisfied the requirements.

13



properties of all other parts of their construction depend only on the motion
behaviour of atoms in Atomix—which is equivalent to the one of Randolph
robots—,we can adopt the PSPACE-hardness result for Randolph’s robot
game.

Furthermore after Hüffner et al. presented a simple proof for Atomix ∈
PSPACE (which applies to the Reachability Problem as well), Holzer and
Schwoon constructed an instance of Atomix which works as a pseudo n-bit
counter and therefore gives an example for an instance with an exponentially
long solution. Applying the same extensions to their construction as above
this also yields for the Reachability Problem with Randolph robots. Finally
we state:

Theorem 8 The Reachability Problem in arbitrary polygons is PSPACE-

complete.

6 Summary

We considered robot swarms moving in cellular environments under a cer-
tain type of movement constraint resembling he movement behaviour of the
atoms in the Atomix game. For Alex Randolph’s robot rame we showed
independantly that there are polygons with C cells where we need Θ(C)
robots to reach every cell, if we allow corridors of width 1. Further, we
gave an upper bound of 3 robots for rectangles without holes. Our main
result is that the question, whether a cell can be reached by a robot, is
NP-hard for arbitrary environments. We extended this result by modifica-
tion of the proofs by Hüffner et al. [15] and Holzer and Schwoon [14] to the
PSPACE-completeness statement for the Reachability Problem.

A Java applet for simulating robot swarms moving under our constraints
can be found in

http://www.geometrylab.de/RacingRobots/

Interesting open problems are, whether there is a constant lower bound
for polygons without holes and without corridors of width 1, and whether
there is an efficient algorithm for the Reachability Problem in this type of
polygons.

References

[1] S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environ-
ments with obstacles. Algorithmica, 32:123–143, 2002.

[2] N. M. Amato, O. B. Bayazit, and J.-M. Lien. Swarming behavior us-
ing probabilistic roadmap techniques. In E. Sahin and W. M. Spears,
editors, Internat. Workshop Swarm Robotics, volume 3342 of Lecture

Notes Comput. Sci., pages 112–125, Berlin Heidelberg, 2004. Springer.

14



[3] E. M. Arkin, M. A. Bender, S. Fekete, T.-R. Hsiang, and J. S. B.
Mitchell. Algorithms for rapidly dispersing robot swarms in unknown
environments. In Proc. 5th Workshop Algorithmic Found. Robot., pages
77–94, 2002.

[4] E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B. Mitchell, and
M. Skutella. The freeze-tag problem: how to wake up a swarm of
robots. In Proc. 13th Annu. ACM-SIAM Symp. Disc. Algor., pages
568–577, 2002.

[5] P. Berman. On-line searching and navigation. In A. Fiat and G. Woeg-
inger, editors, Competitive Analysis of Algorithms. Springer-Verlag,
1998.

[6] M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning of an un-
known environment. Machine Learning, 18(2–3):231–254, 1995.

[7] A. M. Bruckstein, M. Lindenbaum, and I. A. Wagner. Distributed
covering by ant-robots using evaporating traces. IEEE Trans. Robot.

Autom., 15:918–933, 1999.

[8] J. Byrne, R. Jarvis, S. Yuta, and A. Zelinsky. Planning paths of com-
plete coverage of an unstructured environment by a mobile robots. In
Internat. Conf. Adv. Robotics, pages 553–538, 1993.

[9] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, Boston, 2005.

[10] A. Elfes. Using occupancy grids for mobile robot perception and navi-
gation. IEEE Computer, 22(6):46–57, 1989.

[11] B. Engels. Navigation in Gitterumgebungen für verteilte Robotersys-
teme mit eingeschränkter Sensorik. Diplomarbeit, Universität Bonn,
August 2005. http://www.geometrylab.de/RacingRobots/.

[12] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid envi-
ronments by a mobile robot. Comput. Geom. Theory Appl., 24:197–224,
2003.

[13] D. Halperin, L. E. Kavraki, and J.-C. Latombe. Robot algorithms. In
M. Atallah, editor, Algorithms and Theory of Computation Handbook,
chapter 21, pages 21.1–21.21. CRC Press LLC, 1999.

[14] M. Holzer and S. Schwoon. Assembling molecules in Atomix is hard.
Theoret. Comput. Sci., 303(3):447–462, 2004.

15



[15] F. Hüffner, S. Edelkamp, H. Fernau, and R. Niedermeier. Finding opti-
mal solutions to atomix. In Proc. German Conf. Artif. Intell., volume
2174 of Lect. Notes Comput. Sci., pages 229–243. Springer, 2001.

[16] Y. K. Hwang and N. Ahuja. Gross motion planning – a survey. ACM

Comput. Surv., 24(3):219–291, 1992.

[17] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring an
unknown cellular environment. In Abstracts 16th European Workshop

Comput. Geom., pages 140–143. Ben-Gurion University of the Negev,
2000.

[18] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the compet-
itive complexity of navigation tasks. In H. Bunke, H. I. Christensen,
G. D. Hager, and R. Klein, editors, Sensor Based Intelligent Robots, vol-
ume 2238 of Lecture Notes Comput. Sci., pages 245–258, Berlin, 2002.
Springer.

[19] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring grid
polygons online. Technical Report 001, Department of Computer Sci-
ence I, University of Bonn, December 2005. http://web.informatik.uni-
bonn.de/I/publications/ikkl-egpol-05.pdf.

[20] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring simple
grid polygons. In 11th Internat. Comput. Combin. Conf., volume 3595
of Lecture Notes Comput. Sci., pages 524–533. Springer, 2005.

[21] C. Icking and R. Klein. Competitive strategies for autonomous sys-
tems. In H. Bunke, T. Kanade, and H. Noltemeier, editors, Modelling

and Planning for Sensor Based Intelligent Robot Systems, pages 23–40.
World Scientific, Singapore, 1995.

[22] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in
grid graphs. SIAM J. Comput., 11:676–686, 1982.

[23] T. Kamphans. Models and Algorithms for Online Exploration and

Search. Dissertation, University of Bonn, 2005.

[24] R. Karp. Reducibility among combinatorical problems of computer
computaions. In E. Miller and J. W. Thatcher, editors, Complexity

of Computer Computations, pages 88–104. Plenum Press, New York,
1972.

[25] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

16



[26] J. S. B. Mitchell. Geometric shortest paths and network optimization.
In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Ge-

ometry, pages 633–701. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

[27] H. P. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proc. IEEE Internat. Conf. Robot. Autom., pages 116–121,
1985.

[28] A. Randolph. Ricochet robots. Board Game, german edition by Abacus
Games, Dreieich, 1999.

[29] N. S. Rao, S. Kareti, W. Shi, and S. Iyengar. Robot navigation in un-
known terrains: Introductory survey of non-heuristic algorithms. Tech-
nical Report ORNL/TM-12410, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831, July 1993.

[30] J. T. Schwartz and C. Yap. Advances in Robotics Vol. I: Algorithmic

and geometric aspects of robotics. Lawrence Erlbaum Associates, 1987.

[31] M. Sharir. Algorithmic motion planning. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geom-

etry, chapter 40, pages 733–754. CRC Press LLC, Boca Raton, FL,
1997.

[32] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their

Geometric Applications. Cambridge University Press, New York, 1995.

17


