
Exploring Simple Grid Polygons

Christian Icking1, Tom Kamphans2, Rolf Klein2, and Elmar Langetepe2

1 University of Hagen, Praktische Informatik VI, 58084 Hagen, Germany.
2 University of Bonn, Computer Science I, Römerstraße 164, 53117 Bonn, Germany.

Abstract. We investigate the online exploration problem of a short-
sighted mobile robot moving in an unknown cellular room without ob-
stacles. The robot has a very limited sensor; it can determine only which
of the four cells adjacent to its current position are free and which are
blocked, i. e., unaccessible for the robot. Therefore, the robot must en-
ter a cell in order to explore it. The robot has to visit each cell and
to return to the start. Our interest is in a short exploration tour, i. e.,
in keeping the number of multiple cell visits small. For abitrary envi-
ronments without holes we provide a strategy producing tours of length
S ≤ C + 1

2
E − 3, where C denotes the number of cells—the area—, and

E denotes the number of boundary edges—the perimeter—of the given
environment. Further, we show that our strategy is competitive with a
factor of 4

3
, and give a lower bound of 7

6
for our problem. This leaves a

gap of only 1

6
between the lower and the upper bound.

Key words: Robot navigation, exploration, covering, online algorithms,
competitive analysis, lower bounds, grid polygons

1 Introduction

Exploring an unknown environment and searching for a target in unknown po-
sition are among the basic tasks of autonomous mobile robots. Both problems
have received a lot of attention in computational geometry and in robotics; see
e. g. [3, 5, 9, 12, 13, 17].

We use a simple model for the robot and its environment: the robot is short-
sighted, and the surrounding is subdivided by a rectangular integer grid, similar
to a chessboard. Essentially, there are two motivations for using this model
instead of a robot with a full vision system: First, even a laser scanner has a
reliable range of only a few meters. Hence, the robot has to move towards more
distant areas in order to explore them. Second, service robots like lawn mowers
or cleaners need to get close to their work areas. The robot’s sensors provide the
information, which of the four neighbors of the currently occupied cell do not
belong to the polygon and which ones do. The robot can enter the latter cells.
The robot’s task is to visit every cell inside the polygon and to return to the
start cell. Sometimes, this task in also called covering.

Even though our robot does not know its environment in advance it is in-
teresting to ask how short a tour can be in the offline situation, i. e., when the
environment is already known. This amounts to constructing a shortest traveling
salesperson tour on the free cells.

If the polygonal environment contains obstacles, the problem of finding such
a minimum length tour is known to be NP-hard, see Itai et al. [14]. There are
1 + ε approximation schemes by Grigni et al. [7], Arora [2], and Mitchell [16],
and a 53

40
approximation by Arkin et al. [1].

In a polygon without obstacles, the complexity of constructing offline a min-
imum length tour seems to be open. Ntafos [18] and Arkin et al. [1] have shown
how to approximate the minimum length tour with factors of 4

3
and 6

5
, respec-

tively. Umans and Lenhart [19] have provided an O(C4) algorithm for deciding
if there exists a Hamiltonian cycle, i. e., a tour that visits each of the C cells of a
polygon exactly once. For the related problem of Hamiltonian paths, Everett [4]
has given a polynomial algorithm for certain grid graphs.

In this paper our interest is in the online version of the cell exploration
problem. Exploring a grid polygon with holes was considered by Icking et al. [10,
11] and independently by Gabriely and Rimon [6]. Icking et al. showed a lower
bound of 2 for this problem and introduced an exploration strategy that needs
no more than C + 1

2
E+3H +W −2 steps,3 see [15], where C denotes the number

of cells, E the number of boundary edges, H the number of holes and W is a
measure for the windings of the polygon. Gabriely and Rimon showed an upper
bound of C + B, where B denotes the number of boundary cells.

We consider the exploration of polygons without holes. Although both prob-
lems seem to be closely related there is an important difference: We have a lower
bound of 2 for polygons with holes, but it turns out that we can do much better
in simple polygons.

An upper bound for our exploration strategy
is given in terms of the polygon’s area, C, and
the perimeter, E. While C is the number of
free cells, E is the number of edges between
a free cell and a blocked cell, see for exam-
ple Fig. 1. We use E to distinguish between
skinny and thick environments. For thick en-
vironments, E ∈ O(

√
C) holds; thus, the num-

ber of additional cell visits is substantially
smaller than C. Only in polygons that do not
contain any 2 × 2-square of free cells,

= 2(C+1)

C = 24
E = 40

C = 24
E = 20 << 2C

Fig. 1. The perimeter, E,
to distinguish between ’thin’
and ’thick’ environments.

E achieves its maximum value of 2(C + 1), and our upper bound is equal to
2C − 2, but in this case one cannot do better, since even the optimal offline
strategy needs that number of steps.

Our paper is organized as follows: in Sect. 2 we give more detailled description
of our robot and the environment. We give a lower bound for our problem in
Sect. 3. In Sect. 4 we present an exploration strategy, SmartDFS. The analysis
shows in Sect. 5 that this strategy uses no more than C + 1

2
E − 3 steps and is

in fact competitive with a factor of 4

3
.

SmartDFS was implemented in a Java-Applet available in the internet, see [8].

3 We assume that the cells have unit size, so the length of the path is equal to the
number of steps from cell to cell.

2 Definitions

We consider a simple model for the environment of the robot: the robot moves
in a surrounding with a grid structure. More precisely, a cell is a basic block
in our environment, defined by a pair (x, y) ∈ IN2. A cell is either free and
can be visited by the robot, or blocked, i. e., unaccessible for the robot. We call
two cells adjacent, if they share a common edge, and touching, if they share
a common edge or corner. A grid polygon, P , is a connected set of free cells.
A polygon without blocked cells inside its boundary is called simple. From its
current position, the robot can find out which of the adjacent cells are free and
which are blocked, and it can move in one step to an adjacent free cell, see Fig. 1.
The robot has enough memory to store a map of known cells.

3 A Lower Bound

Theorem 1. Every strategy for the exploration of a simple grid polygon with C

cells needs at least 7

6
C steps.

Proof. We assume that the robots starts in a corner of the polygon, see Fig. 2(i).
W. l. o. g. we assume that the strategy decides to walk one step to the east. For
the second step, the strategy has two possibilities: either it leaves the wall with
a step to the south, see Fig. 2(ii), or it continues to follow the wall with a further
step to the east, see Fig. 2(iii). In the first case, we close the polygon as shown
in Fig. 2(iv). The robot needs at least 8 steps to explore this polygon, but the
optimal strategy needs only 6 steps yielding a factor of 8

6
. In the second case

we proceed as follows. If the robot leaves the boundary, we close the polygon as
shown in Fig. 2(v) and (vi). The robot needs 12 step, but 10 steps are sufficient.
In the most interesting case, the robot still follows the wall, see Fig. 2(vii). In
this case, the robot needs at least 28 steps to explore this polygon, whereas an
optimal strategy needs only 24 steps. Thus, we achieve a factor of 7

6
.

We can easily extend this pattern to polygons of arbitrary size by repeat-
ing the construction using the ’entry’ and ’exit’ cells denoted by the arrows in
Fig. 2(iv)–(vii). This construction cannot lead to overlapping polygons or poly-
gons with holes, since the polygon always extends to the same direction. ut

(vii)

s

s

(ii) (iii)

ss

ss s

(i)

(iv) (v) (vi)

Fig. 2. A lower bound for the exploration of simple polygons. The dashed lines show
the optimal solution, 4 denotes the robot’s position.

4 An Exploration Strategy

As a first approach, we can apply a simple depth-first search algorithm (DFS):
The polygon is explored following the left-hand rule, i. e., for every entered cell
the robot tries to continue its path to an adjacent and unexplored cell, preferring
a step to the left over a straight step over a step to the right. This results in a
complete exploration, but takes 2C − 2 steps. Since the shortest tour needs at
least C steps, DFS turns out to be 2-competitive. However, there is no reason to
visit each cell twice just because this is required in some special situations like
dead ends of width 1. In the following, we introduce two improvements to DFS.

improved DFS c2 s

c1

s
c2

c1

DFS
(ii)(i)

Fig. 3. Improvement to DFS: (i) optimize return path, (ii) detect polygon splits.

The first improvement is to return directly to those cells that have unexplored
neighbors. See e. g. Fig. 3(i): DFS walks from c1 to c2 through the completely
explored corridor. A more efficient strategy walks on a shortest path—on cells
that are already known—from c1 to c2.

Now, observe the polygon shown in Fig. 3(ii). With DFS, the robot walks four
times through the narrow corridor. A more clever solution explores the right part
immediately after the first visit of c1, and continues with the left part, resulting
in only two visits. The cell c1 has the property that the graph of unvisited cells
splits into two components after c1 is explored. We call cells like this split cells.
The second improvement is to recognize and handle split cells, see Sect. 5. The
following description of our strategy, SmartDFS, resumes both improvements to
DFS, see Fig. 5 for an example.

SmartDFS(P, start):
Choose direction dir, such that

reverse(dir) is a blocked cell;
ExploreCell(dir);
Walk on the shortest path to start;

ExploreStep(base, dir):
if unexplored(base, dir) then

Walk on shortest path to base;
move(dir);
ExploreCell(dir);

end if

ExploreCell(dir):
base := current position;
if not isSplitCell(base) then

ExploreStep(base, ccw(dir));
ExploreStep(base, dir);
ExploreStep(base, cw(dir));

else
Choose different order, see

Sect. 5.
end if

5 The Analysis of SmartDFS

SmartDFS explores the polygon in layers, beginning with the cells along the
boundary of P and proceeding towards the interior of P .

Definition 2. Let P be a grid polygon. The boundary cells of P uniquely define
the first layer of P . The polygon P without its first layer is called the 1-offset of
P . The `-th layer and the `-offset of P are defined successively, see Fig. 4(i).

Lemma 3. The `-offset of a simple grid polygon, P , has at least 8` edges less
than P .

Proof. First, we cut off blind alleys narrower than 2`, since those parts of P

do not affect the `-offset. We walk clockwise around the boundary cells of the
remaining polygon, see Fig. 4(i). For every left turn the offset gains at most 2`

edges and for every right turn the offset looses at least 2` edges. Since, there are
four more right turns than left turns, we loose at least 8` edges. ut

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

cut off

2` edges
(ii)

Π

`

(iv)

gained

(i)
`

2` edges (iii)

lost

P1

P2

c

Q c′

P2

P1

c′

P1

c

c

P2

Q

Fig. 4. (i) The 2-offset (shaded) of a grid polygon; three examples for split cells, (ii)
type (II), (iii) and (iv) type (I).

Definition 2 allows us to specify the handling of a split cell in SmartDFS. Let
us consider the situation shown in Fig. 5(i): SmartDFS has just met the first

split cell, c, in the fourth layer of P . P divides into three parts: P = K1

•

∪K2

•

∪
{ visited cells of P }, where K1 and K2 denote the connected components of the
unvisited cells. In this case it is reasonable to explore the component K2 first
since the start cell s is closer to K1.

We use the layer numbers to decide which component we have to visit at last.
Whenever a split cell occurs in layer `, every component is one of the following
types, see Fig. 4(ii)–(iv): (I) Ki is completely surrounded by layer `,4 (II) Ki is
not surrounded by layer `, or (III) Ki is partially surrounded by layer `.

In any case, it is the best choice to explore the component of type (III) at
last. Note that it may occur that three components arise at a split cell, but we
can handle this case as two successive splits occuring at the same split cell.

4 More precisely, the part of layer ` that surrounds Ki is completely visited. For
convenience, we will use slightly sloppy, but shorter form.

K2

c
K1

s′

s

K1

c Q

s

c

P2

P1

Q

P

Q

K2

(i) (ii)

Fig. 5. A decomposition of P at the split cell c and its handling in smartDFS.

For the analysis we consider two polygons, P1 and P2, as follows. Let Q be

the square of width 2q + 1 around c with q :=

{

`, if K2 is of type (I)
` − 1, if K2 is of type (II)

,

where K2 denotes the component that is explored first, and ` denotes the layer
in which the split cell was found. We choose P2 ⊂ P ∪ Q, such that K2 ∪ {c} is
the q-offset of P2, and P1 := ((P\P2)∪Q)∩P , see Fig. 5. The intersection with
P is necessary, since Q may exceed the boundary of P .

The choice of P1, P2 and Q ensures that the robot’s path in P1\Q and in
P2\Q do not change compared to the path in P . The parts of the robot’s path
that lead from P1 to P2 and from P2 to P1 are fully contained in the square Q.
Just the parts inside Q are bended to connect the appropriate paths inside P1

and P2, see Fig. 5.
We want to visit every cell in the polygon and to return to s. Every strategy

needs at least C(P) steps to fulfill this task. Thus, we can split the overall
length of the exploration path Π into two parts, C(P) and excess(P), with
|Π | = C(P) + excess(P). Since SmartDFS recursively explores K2 ∪ {c}, we
want to apply the upper bound inductively to the component K2 ∪ {c}. The
following lemma gives us the relation between the path lengths in P and the
path lengths in the two components.

Lemma 4. Let P be a simple grid polygon. Let the robot visit the first split
cell, c, which splits the unvisited cells of P into two components K1 and K2,
where K2 is of type (I) or (II). With the preceding notions we have excess(P) ≤
excess(P1) + excess(K2 ∪ {c}) + 1.

Proof. Since c is the first split cell, there is no excess in P2\(K2 ∪ {c}) and it
suffices to consider excess(K2 ∪ {c}) for this part. After K2 ∪ {c} is finished,
the robot starts at c and explores K1. For this part we take excess(P1) into
account. Finally, we add one single step, because the split cell c is visitited twice:

once, when SmartDFS detects the split and once more after the exploration of
excess(K2 ∪ {c}) is finished. Altogether, the given bound is achieved. ut

The following lemma can easily be shown and allows us to charge the number
of edges in P1 and P2 against the number of edges in P and Q.

Lemma 5. Let P be a simple grid polygon, and let P1, P2 and Q be defined as
above. The number of edges satisfy E(P1) + E(P2) = E(P) + E(Q).

Lemma 6. Let Π be the shortest path between two cells in a grid polygon P .
The length of Π is bounded by |Π | ≤ 1

2
E(P) − 2.

Proof. The maximal distance is achieved between two cells in the first layer, and
the shortest path between them is never longer than 1

2
·#(cells in the first layer).

Analogously to Lemma 3, this layer has at most E(P) − 4 cells. ut

Now, we can give an upper bound for the number of steps used to explore a
simple polygon.

Theorem 7. Let P be a simple grid polygon with C cells and E edges. P can
be explored with S ≤ C + 1

2
E − 3 steps. This bound is tight.

Proof. C is the number of cells and thus a lower bound on the number of steps
that are needed to explore the polygon P . We will show by induction on the
number of components that excess(P) ≤ 1

2
E(P) − 3 holds.

For the induction base we consider a polygon without any split cell, i. e.,
SmartDFS visits all cells and returns on the shortest path to the start cell. Since
there is no polygon split, all cells of P can be visited by a path of length C − 1.
By Lemma 6 the shortest path back to the start cell is not longer than 1

2
E − 2

and excess(P) ≤ 1

2
E(P) − 3 holds.

Now, we assume that there is more than one component during the applica-
tion of SmartDFS. Let c be the first split cell detected in P . When SmartDFS
reaches c, two new components, K1 and K2, occur. We consider the two polygons
P1 and P2 defined as above using the square Q around c.

W. l. o. g. we assume that K2 is recursively explored first. After K2 is com-
pletely explored, SmartDFS proceeds with the remaining polygon. As shown in
Lemma 4 we have excess(P) ≤ excess(P1)+excess(K2∪{c})+1 . Now, we apply
the induction hypothesis to P1 and K2 ∪ {c} and get

excess(P) ≤ 1

2
E(P1) − 3 + 1

2
E(K2 ∪ {c}) − 3 + 1 .

By applying Lemma 3 to the q-offset K2 ∪ {c} of P2 we achieve
excess(P) ≤ 1

2
E(P1)− 3 + 1

2
(E(P2)− 8q)− 3 + 1 = 1

2
(E(P1) + E(P2))− 4q − 5 .

From Lemma 5 we conclude E(P1) + E(P2) ≤ E(P) + 4(2q + 1). Thus, we get
excess(P) ≤ 1

2
E(P)− 3. This bound is achieved exactly in polygons that do not

contain any 2 × 2-square of free cells. ut

So far we have shown an upper bound for the number of steps needed to
explore a polygon that depends on the number of cells and edges in the polygon.
Now we want to analyze SmartDFS in the competitive framework.

Corridors of width 1 or 2 play a crucial role in the following, so we refer to
them as narrow passages.5 It is easy to see that narrow passages are explored
optimally. In passages of width 1 both SmartDFS and the optimal strategy visit
every cell twice, and in the other case both strategies visit every cell exactly
once. We need two lemmata to show a competitive factor for SmartDFS. The
first one gives us a relation between the number of cells and the number of edges
for a special class of polygons.

Lemma 8. For a simple grid polygon, P , without any narrow passage or split
cells in the first layer, E(P) ≤ 2

3
C(P) + 6 holds.

Proof. Consider such a polygon, P , see Fig. 6(i). We successively remove an outer
row or column of at least three boundary cells, maintaining our assumptions on
P . These assumptions ensure that we can always find such a row or column.
Thus, we remove at least three cells and at most two edges. This decomposition
ends with a 3× 3 block of cells that fulfills E = 2

3
C(P)+ 6. Now, we reverse our

decomposition, i. e., we successively add all rows and columns until we end up
with P . In every step, we add at least three cells and at most two edges. Thus,
E ≤ 2

3
C(P) + 6 is fulfilled in every step. ut

(i)

c′

Π′

s′

s

optimal strategy(ii)

s

SmartDFS

s

P ′

Fig. 6. (i) For polygons without narrow passages or split cells in the first layer, E(P) ≤
2

3
C(P) + 6 holds, and the last explored cell, c

′, lies in the 1-offset, P
′ (shaded), (ii) In

a corridor of width 3 and even length, S(P) = 4

3
SOpt(P) − 2 holds.

For the same class of polygons, we can show that SmartDFS behaves slightly
better than the bound in Theorem 7.

Lemma 9. A polygon of the same type as in Lemma 8 can be explored using no
more than S(P) ≤ C(P) + 1

2
E(P) − 5 steps.

Proof. We have shown S(P) ≤ C(P) + 1

2
E(P) − 3 in Theorem 7. In the proof,

we used Lemma 6 to bound the return path, but this lemma bounds the path
between two cells in the first layer. By our assumptions on P , we can completely
explore the first layer of P before visiting another layer, and the return path,

5 More precisely, a cell, c, belongs to a narrow passage, if c can be removed without
changing the layer number of any other cell.

Π , starts in a cell, c′, in the 1-offset, P ′, see Fig. 6(i). Let s′ denote the first
visited cell in P ′. Remark that s and s′ are at least touching each other. Now,
Π is bounded by a shortest path, Π ′, from c′ to s′ in P ′ and a shortest path
from s′ to s, i. e., |Π | ≤ |Π |′ + 2. Π ′, in turn, is bounded using Lemma 6 by
|Π |′ ≤ 1

2
E(P ′)− 2. With Lemma 3, E(P ′) ≤ E(P)− 8 holds, and altogether we

get |Π | ≤ 1

2
E(P) − 4, which is two steps shorter than stated in Lemma 6. ut

Theorem 10. The strategy SmartDFS is 4

3
-competitive.

Proof. Let P be a simple grid polygon. First, we remove all narrow passages
from P and get a sequence of (sub-)polygons Pi, i = 1, . . . , k, without narrow
passages. For every Pi, i = 1, . . . , k − 1, the optimal strategy in P explores the
part of P that corresponds to Pi up to the narrow passage that connects Pi with
Pi+1, enters Pi+1, and fully explores every Pj with j ≥ i. Then it returns to Pi

and continues with the exploration of Pi. Further, we already know that narrow
passages are explored optimally. This allows us to consider every Pi separately
without changing the competitive factor of P .

Now, we observe a (sub-)polygon Pi. We show by induction on the number
of split cells in the first layer that S(Pi) ≤ 4

3
C(Pi) − 2 holds. Note that this is

exactly achieved in polygons of size 3 × m with m even, see Fig. 6(ii).
If Pi has no split cell in the first layer, we can apply Lemma 9 and Lemma 8:
S(Pi) ≤ C(Pi) + 1

2
E(Pi) − 5 ≤ C(Pi) + 1

2

(

2

3
C(Pi) + 6

)

− 5 = 4

3
C(Pi) − 2 .

Two cases occur if we meet a split cell, c, in the first layer, see Fig. 4(ii)–(iv).
In the first case, the new component was never visited before (type (II)). Here,
we define Q := {c}. The second case occurs, because the robot meets a cell, c′,
that is in the first layer and touches the current cell, c, see for example Fig. 4(iii)
and (iv). Let Q be the smallest rectangle that contains both c and c′.

Similar to the proof of Theorem 7, we split the polygon Pi into two parts, both
including Q. Let P ′′ denote the part that includes the component of type (II) or
(III), P ′ the other part. For |Q| = 1, see Fig. 4(ii), we conclude S(Pi) = S(P ′)+
S(P ′′) and C(Pi) = C(P ′) + C(P ′′) − 1. Applying the induction hypothesis to
P ′ and P ′′ yields S(Pi) = S(P ′) + S(P ′′) ≤ 4

3
C(Pi) + 4

3
− 4 < 4

3
C(Pi) − 2 .

For |Q| ∈ { 2, 4 } we gain some steps by merging the polygons. If we consider
P ′ and P ′′ separately, we count the steps from c′ to c—or vice versa—in both
polygons, but in Pi the path from c′ to c is replaced by the exploration path in
P ′′. Thus, we have S(Pi) = S(P ′)+S(P ′′)−|Q| and C(Pi) = C(P ′)+C(P ′′)+|Q|.
This yields S(Pi) = S(P ′)+S(P ′′)−|Q| = 4

3
C(Pi)+

1

3
(|Q|−6)−2 < 4

3
C(Pi)−2 .

An optimal strategy needs ≥ C steps, which, altogether, yields a competitive
factor of 4

3
. ut

6 Summary

It turned out that the exploration of simple polygons is easier than the explo-
ration of polygons with holes in terms of competitivity. In contrary to the lower
bound of 2 for polygons with holes, we have shown a lower bound of 7

6
and an

upper bound of 4

3
for simple polygons, leaving a gap of only 1

6
. Additionally, we

can also bound the length of an exploration path by C + 1

2
E − 3 which is tight.

References

[1] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for
lawn mowing and milling. Technical report, Mathematisches Institut, Universität
zu Köln, 1997.

[2] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 2–11, 1996.

[3] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environ-
ment I: The rectilinear case. J. ACM, 45(2):215–245, 1998.

[4] H. Everett. Hamiltonian paths in non-rectangular grid graphs. Report 86-1, Dept.
Comput. Sci., Univ. Toronto, Toronto, ON, 1986.

[5] A. Fiat and G. Woeginger, editors. On-line Algorithms: The State of the Art,
volume 1442 of Lecture Notes Comput. Sci. Springer-Verlag, 1998.

[6] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environments by
a mobile robot. Comput. Geom. Theory Appl., 24:197–224, 2003.

[7] M. Grigni, E. Koutsoupias, and C. H. Papadimitriou. An approximation scheme
for planar graph TSP. In Proc. 36th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 640–645, 1995.

[8] U. Handel, C. Icking, T. Kamphans, E. Langetepe, and W. Meiswinkel.
Gridrobot—an environment for simulating exploration strategies in unknown cel-
lular areas. Java Applet, 2000. http://www.geometrylab.de/Gridrobot/.

[9] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration prob-
lem. SIAM J. Comput., 31:577–600, 2001.

[10] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring an unknown
cellular environment. In Abstracts 16th European Workshop Comput. Geom.,
pages 140–143. Ben-Gurion University of the Negev, 2000.

[11] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the competitive com-
plexity of navigation tasks. In H. Bunke, H. I. Christensen, G. D. Hager, and
R. Klein, editors, Sensor Based Intelligent Robots, volume 2238 of Lecture Notes

Comput. Sci., pages 245–258, Berlin, 2002. Springer.
[12] C. Icking, R. Klein, and E. Langetepe. Searching for the kernel of a polygon:

A competitive strategy using self-approaching curves. Technical Report 211, De-
partment of Computer Science, FernUniversität Hagen, Germany, 1997.

[13] C. Icking, R. Klein, E. Langetepe, S. Schuierer, and I. Semrau. An optimal com-
petitive strategy for walking in streets. SIAM J. Comput., 33:462–486, 2004.

[14] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs.
SIAM J. Comput., 11:676–686, 1982.

[15] T. Kamphans. Models and Algorithms for Online Exploration and Search. PhD
thesis, University of Bonn, to appear.

[16] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput., 28:1298–1309, 1999.

[17] J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 633–
701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[18] S. Ntafos. Watchman routes under limited visibility. Comput. Geom. Theory

Appl., 1(3):149–170, 1992.
[19] C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. In Proc. 38th

Annu. IEEE Sympos. Found. Comput. Sci., pages 496–507, 1997.

