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Abstract. We consider the problem of finding a door along a wall with
a blind robot that neither knows the distance to the door nor the direc-
tion towards of the door. This problem can be solved with the well-
known doubling strategy yielding an optimal competitive factor of 9
with the assumption that the robot does not make any errors during
its movements. We study the case that the robot’s movement is erro-
neous. In this case the doubling strategy is no longer optimal. We present
optimal competitive strategies that take the error assumption into ac-
count.
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1 Introduction

Motion planning in unknown environments is theoretically well-understood and
also practically solved in many settings. During the last decade many different
objectives where discussed under several robot models. For a general overview
on online motion planning problems see e. g. [3, 15, 9, 17].

Theoretical correctness results and performance guarantees often suffer from
idealistic assumptions so that in the worst case a correct implementation is im-
possible. On the other hand, practioners analyze correctness and performance
mainly statistically or empirically. Therefore it is useful to investigate, how the-
oretic online algorithms with idealistic assumptions behave if those assumptions
cannot be fulfilled. Can we incorporate assumptions of errors in sensors and
motion into the analysis?

The task of finding a point on a line by a blind agent without knowing the
location of the goal was considered by Gal [6, 1] and independently reconsidered
by Baeza-Yates et al. [2]. Both introduced the so-called doubling strategy, which
is a basic paradigma for searching algorithms, e. g., approximating the optimal
search path, see [5]. Searching on the line was generalized to searching on m
concurrent rays, see [8, 13, 14, 4, 7, 12].

In this paper we investigate how an error in the movement influences the
correctness and the corresponding competitive factor of a strategy. The error
range, denoted by a parameter δ, may be known or unknown to the strategy.
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Due to space limitations, we give only brief sketches of the proofs and refer the
interested reader to [11] where we also consider a second error model.

2 The Standard Problem and the Error Model

The task is to find a point, t, on a line. Both the distance from the start position
s to t, as well as the position of t (left hand or right hand to s) is unknown. A
strategy can be described by a sequence F = (fi)i∈IN. fi denotes the distance the
robot walks in the i-th iteration. If i is even (odd), the robot moves fi steps from
the start to the right (left) and fi steps back. It is assumed that the movement
is correct, so after moving fi steps away from the start point and fi towards s,
the robot has reached s. This does not hold if there are errors in the movement.
In this case, every movement may be erroneous, which causes the robot to move
more or less far than expected. We require that the robots error per unit is
within a certain error bound, δ. Let f denote the length of a movement required
by the strategy then we require that the robot moves at least (1 − δ)f and at
most (1 + δ)f for δ ∈ [0, 1[.

3 Finding a Point on a Line

First, we assume that the robot is not aware of making any errors. Thus, the
optimal 9-competitive doubling strategy fi = 2i [6, 2] seems to be the best choice
for the robot. Let �+i (�−i ) be the covered distance to the right (left) in the i-th
step. Now, the drift from s, ∆k, is ∆k =

∑k
i=1(�

−
i − �+i ).

Theorem 1. The robot will find the door with the doubling strategy fi = 2i,
if the error δ is not greater than 1

3 . The generated path is never longer than
8 1+δ

1−3δ + 1 times the shortest path to the door.

Proof sketch. We assume that the goal is found on the right side. For the com-
petitivity it is the worst, if the door is hit in step 2j+2, but located just a little
bit further away than the rightmost point reached in step 2j.

We get the worst case ratio
|πonl|

d = 1 +
∑2j+1

i=1
(2�−

i
)

�+2j
−
∑2j−1

i=1
(�−

i
−�+

i
)+ε

(∗).
This maximizes for �∓i =(1± δ)2i, and
we get |πonl|

d < 1 + 8 1+δ
1−3δ . We have to

require δ ≤ 1
3 , otherwise the distance

(1−3δ) 22j +4δ from s may not exceed
the point 4δ . �� d

.

..

�+1 = 2 (1 − δ)

�+2 = 4 (1 − δ)

�−2 = 4 (1 + δ)

�−3 = 8 (1 + δ)

22(j+k)(1−δ)
s′

s

∆2j+2k−1

�−1 = 2 (1 + δ)

One might wonder if there is a strategy which takes the error δ into account
and yields a smaller factor. Intuitively this seems to be impossible, but we are
able to show that there is such a strategy.
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Theorem 2. In the presence of an error up to δ there is a strategy that meets

every goal and achieves a competitive factor of 1 + 8
(

1+δ
1−δ

)2

.

Proof sketch. We design a strategy, F = (fi)i∈IN. From (*) we conclude that it

is sufficient to minimize G(n,δ)(F ) :=
∑n+1

i=1
fi

(1−δ)fn−2δ
∑n−1

i=1
fi

, which is achieved by

the strategy fi =
(
2 1+δ

1−δ

)i

. This strategy is reasonable since it monotonically
increases the distance to s, and we reach every goal. ��

This factor is optimal. We can show that for every δ there is a strategy, F ∗,
that achieves the optimal factor Cδ exactly in every step, and describe F ∗ by a
recurrence. Finally, the condition fi > 0 leads to a lower bound for Cδ. Thus:

Theorem 3. In the presence of an error up to δ ∈ [0, 1[, there is no competitive

strategy that yields a factor smaller than 1 + 8
(

1+δ
1−δ

)2

.

4 Error-Prone Searching on m Rays

The robot is located at the common endpoint of m infinite rays, knowing neither
the location—the ray containing t— nor the distance to t. Gal [6] showed that
w.l.o.g. one can use a periodic and monotone strategy, i. e., fi and fi+m visit
the same ray, and fi < fi+m holds. In the error-prone setting, the start point of
every iteration cannot drift away, since the start point is the only point where
all rays meet.

Theorem 4. Searching for a target located on one of m rays with an error-prone
robot using a monotone and periodic strategy is competitive with an optimal
factor of 3 + 2 1+δ

1−δ

(
mm

(m−1)m−1 − 1
)

for δ < e−1
e+1 .

Proof sketch. It turns out that we consider the functionals Gk(F ) :=
∑k+m−1

i=1
fi

fk

in this case, which are identical to the functionals considered in the error-free
m-ray search. Thus, fi = (m/m − 1)i minimizes Gk(F ), see [2, 6]. Ensuring
monotony leads to the condition δ < e−1

e+1 . ��

5 Summary

We have analyzed the standard doubling strategy in the presence of errors in
movements. The robot still reaches the goal for δ ≤ 1

3 with a competitive ratio

of 8 1+δ
1−3δ + 1. If δ is known to the strategy fi =

(
2 1+δ

1−δ

)i

is optimal with a

competitive factor of 1 + 8
(

1+δ
1−δ

)2

. In the case of m rays fi = (m/m−1)i yields
3 + 2 1+δ

1−δ

(
mm

(m−1)m−1 − 1
)

for δ ≤ e−1
e+1 ≈ 0.46.
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