
The Pledge Algorithm Reconsidered
under Errors in Sensors and Motion

Tom Kamphans and Elmar Langetepe

University of Bonn
Institute of Computer Science I

Römerstraße 164
53117 Bonn
Germany

{kamphans,langetep}@cs.uni-bonn.de
http://web.cs.uni-bonn.de/I/agklein.html

Abstract. We consider the problem of escaping from an unknown polyg-
onal maze under limited resources and under errors in sensors and mo-
tion. It is well-known that the pledge algorithm always finds a path out
of an unknown maze without any means of orientation, provided that
such a path exists. The pledge algorithm sums up the turning angles
along the boundary of the obstacles and plans its way by using a single
counter and no further information. The correctness proof makes use of
the fact that motions in the free space and the measurement of turning
angles can be done exactly. We consider the case that the free motion of
the robot and the computation of turning angles are erroneous.
This work is a first attempt to incorporate error assumptions into theo-
retically sound proofs of online motion planning algorithms.

1 Introduction

Online motion planning in unknown environments is theoretically well-under-
stood and practically solved in many settings. During the last decade many
different objectives where discussed under several robot models.

For instance, the task of searching for a target using a touch sensor and a
compass to the goal was first considered by Lumelsky and Stepanov [12]. They
invented the BUG algorithm and many variants of this algorithm were discussed
and analyzed afterwards, for example see Rajko and La Valle [14] and Kamon
and Rivlin [10]. A BUG-like algorithm was also used for the Mars-Rover project,
see Laubach [11]. The correctness of the algorithms are proven under idealistic
assumptions whereas the practical relevance is always tested empirically.

Moreover, the task of exploring an unknown environment has attracted the-
oretical and practical attention. Deng et. al. [4] studied the case of a robot
equipped with a vision system that maps an unknown, simple, rectangular en-
vironment. They developed a strategy and prove that under correct vision and
motion the corresponding path of the robot is never longer than

√
2 times the

optimal path computed under full information in advance. The strategy is called

R. Solis-Oba and K. Jansen (Eds.): WAOA 2003, LNCS 2909, pp. 165–178, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

166 Tom Kamphans and Elmar Langetepe

√
2-competitive in this model. Under the same idealistic assumptions Hoffmann

et. al. [8] presented and analyzed an 26.5-competitive algorithm for exploring the
interior of a simple polygon. On the other hand the task of building a map of
an unknown environment is solved practically and analyzed empirically in the
field of robotics, see e. g. Batalin and Sukhatme [2] or Yamauchi et. al. [17]. For a
general overview of theoretical online motion planning problems see the surveys
[15, 16, 3, 13, 9].

Theoretical correctness results and performance guarantees from labyrinth
theory or computational geometry suffer from idealistic assumptions, therefore
in the worst case a correct implementation is impossible. On the other hand
practioners analyze correctness results and performance guarantees mainly sta-
tistically. So it might be useful to investigate, how online algorithms with idealis-
tic assumptions behave, if those assumptions cannot be fulfilled, more precisely,
can we incorporate assumptions of errors in sensors and motion directly into the
theoretical analysis?

As a first approach we consider a simple and theoretically sound online strat-
egy, the well-known pledge algorithm, see Abelson and diSessa [1] and Hemmer-
ling [7]. Given an unknown polygonal maze, the robot has to leave the maze,
using nothing else than a touch sensor, the ability to measure its turning angles
and a very limited amount of memory. The robot is not able to create a map or
to set landmarks. The pledge algorithm assumes that the robot is able to move
a straight line between the obstacles and to count its turning angles correctly.
Gritzmann [5] remarked that it would be interesting to know how the pledge al-
gorithm behaves, if those assumptions cannot be fulfilled. Of course, if the robot
can make arbitrary big mistakes, there are always environments, in which the
robot is hopelessly trapped. But what if the robot’s errors are small enough?
Are there upper bounds for measuring errors? We investigate which conditions
must hold to ensure that a robot can leave an unknown maze with a pledge-like
algorithm.

The paper is organized as follows. In Sect. 2 we specify the robot’s task
and the model of the robot and its environment. We recapitulate the pledge
algorithm, and analyze the sources for errors in this algorithm. With this insight,
in Sect. 3 we define a class of curves in the robot’s environment that fulfill a set
of conditions. Further we show that a robot will escape from an unknown maze,
if its path somehow follows a curve from that class. Last, in Sect. 5 we discuss
the impact of our results on the design of a robot. Our main result is, that a
robot equipped with a compass with reasonable small errors is able to leave an
unknown maze using the pledge algorithm; see Sect. 4.1. Further we show results
for a robot with exact free motion and bounded angle measuring error and for
a robot in an ‘almost rectangular’ environment.

2 Preliminaries

Let us assume that a maze with polygonal shaped obstacles in the plane is given.
The robot is able to recognize and follow a wall in a specified direction (w. l. o. g.

The Pledge Algorithm Reconsidered 167

counter-clockwise) and to count the turning angles. How these abilities can be
realized depends on the hardware of a specific robot. For example, the turning
angles may be counted by odometry or by measuring angles along the walls with
sensors. Other abilities for orientation and navigation are not required, especially
it is not necessary that the robot can build a map of its environment.

The task of leaving an unknown maze can be solved using the well-known
pledge algorithm, see algorithm 1, which performs only two types of movements:
Either the robot follows the wall of an obstacle and counts the turning angles, or
the robot moves through the free space between the obstacles in a fixed direction.
The latter task always starts at vertices of the obstacles when the angle-counter
reaches a pre-defined value. As soon as the robot leaves the maze it recieves a
signal of success.

Algorithm 1: Pledge

REPEAT
ω = 0
REPEAT

Move in direction ω in the free space
UNTIL Robot hits an obstacle
REPEAT

Follow the wall in counter-clockwise direction
Count the overall turning angle in ω

UNTIL Angle Counter ω = 0
UNTIL Robot is outside the maze

Both types of movements in the pledge algorithm may be afflicted with errors.
Either the turning angles are not measured exactly and the robot leaves the
obstacle earlier or later than expected, or the robot cannot follow its initial
direction during the movement in the free space. In the idealised setting the
robot is error-free and it was shown by Abelson and diSessa [1] and Hemmerling
[7] that in this case a robot will escape from a polygonal maze by performing
the pledge algorithm provided that there is such a solution. An example of the
robot’s path using an error-free pledge algorithm is given in Fig. 1. The angle
counting technique is illustrated for the second obstacle: After the robot hits the
obstacle in p2 it turns about −π

2 to follow the wall. In p3 the robot turns about
+π

4 to follow the next wall. Finally, in p4 it turns about +π
4 again until the angle

counter reaches zero and the robot leaves the obstacle. Observe that the robot
does not leave the obstacle in p1, since its angle counter is −2π instead of zero.

In the following we define a class K of curves in the robot’s workspace. The
curves in K represent possible paths that lead to an exit, even if the robot’s
sensors and motions are erroneous. For convenience, we assume that the robot
is point-shaped, but this is no restriction as long as the robot is smaller than
the distances between obstacles. So the parts of a curve that map to a move-
ment along a wall, are line segments on the boundaries of obstacles. To escape
from an unknown maze, the robot’s strategy is not required to calculate a path

168 Tom Kamphans and Elmar Langetepe

ω = −2π
p1 + π

4

+ π
4

p4

p3

p = (px, py , 0)

− π
2

p2

s

Fig. 1. The path of the pledge algorithm.

that matches a curve in K exactly, rather it is sufficient that the robot’s path
orientates essentially at a curve in K. For example the robot may follow a wall
in a certain distance, because it is not point-shaped, or it may follow a wall in a
zig-zag manner. See Sect. 4 for more details.

Since every point on the curve represents a position as well as a heading,
the curve is a subspace of the workspace C = IR × IR × IR and a point will be
described as C(t) = (P (t), ϕ(t)), where P (t) = (X(t), Y (t)) denotes the position
at time t and ϕ(t) the heading. Note, that ϕ(t) is the sum of all turns the curve
has made so far, so if the curve has made two full turns counterclockwise then
ϕ(t) equals 4π instead of zero.

In order to classify the possible positions in the workspace, we divide the
space of positions, P = IR × IR, into three subspaces: First, the space of forbidden
configurations, Cforb, the union of the interior of all obstacles. Second, the space of
half-free configurations, Chalf, that is the union of the boundaries of the obstacles,
and last the free configurations, Cfree, where P (t) /∈ Pi for all obstacles Pi holds.

If a curve hits a point p = P (Hi) in Chalf after a movement through Cfree,
we will call Hi a hit point. If the curve leaves Chalf and enters the free space at
q = P (Li), we call Li a leave point. With respect to the pledge algorithm we
assume that every leave point belongs to a vertex of an obstacle.

3 Sufficient Conditions

Let us assume that it is possible to leave a given unknown maze. Within this
section we establish a set of sufficient conditions for escaping from the maze. The
robot follows—somehow—a curve C and to ensure that the robot can escape we
want to avoid infinite cycles in the curve.

There are mainly two sources of errors in the pledge algorithm: one concerns
the motion in the free space and the other the motion along the boundaries of
the obstacles. The first type of error occurs, if the robot is not able to move a

The Pledge Algorithm Reconsidered 169

straight line in the free space, the latter, if the robot’s angle counter is in some
way inaccurate. Both types lead to a set of sufficient conditions that ensures the
correctness of an error-afflicted pledge algorithm.

s

Fig. 2. Small errors along each boundary can sum up to a cycle.

To establish the set of conditions, we first observe that already small counting
errors along the boundary of obstacles or deviations in the free space can sum
up to a big mistake and lead to an infinite cycle. Figure 2 shows an example:
The dashed lines show the correct leaving direction with respect to the direction
in the hit point. Between the obstacles the robot drifts a little bit away from the
correct direction and ends up in an infinite loop. This would happen even if the
curve would not be allowed to make a full 2π turn in the free space. Obviously,
cycles would be inhibited, if the curve between two obstacles would stay in a
wedge around the initial direction. In fact, this wedge can be as large as a half
space! This leads to the condition that for any two points in the free space, the
difference in the headings should be lower than π. We will refer to this as the
free space condition.

Unfortunately the free space condition is not sufficient. Figure 3 shows two
examples, where C has a cycle, although the free space condition is fulfilled.
In both cases the curve starts in s, meets an obstacle in Hi, misses the first
possible leave point p and leaves the obstacle at another vertex q. The curve in
Fig. 3(i) hits the same obstacle again in Hk. In Fig. 3(ii) the curve hits another
obstacle, leaves this one in Lk and hits the first obstacle again in Hk. In both
cases P (Hk) is visited two times, at Hk and tk. In the first case, the heading
in tk is slightly larger than π, in the second case +π

2 . Observe that the curve
in Fig. 3(ii) represents a second mistake: the heading in the hit point Hk is not
zero, as it should be according to the pledge algorithm. This may occur if the
last obstacle was left too early or the path between the obstacles is not a straight
line segment or this may be a combination of both reasons. However, the heading
in Hk is −π

2 − ε and both mistakes sum up to an error that is slightly larger
than π, too.

Note, that the problem is not related to a second visit of a single point. The
curve of the error-free pledge algorithm, may have many self-hits. It is rather

170 Tom Kamphans and Elmar Langetepe

+π

(i) (ii)

p

0

tk

− π
2

s

0

0

Hi

q − π
2− 3

2π

+π
2

− π
2 − ε

Hk

s
0

q
Lk

Hk

tk

0

0

p
Hi

+π + ε

−π

Fig. 3. Missing a leave point can lead to a cycle.

(ii)(i)
P (t0)

P (t3) P (t3)P (t1) = P (t2)
P (t0)

P (t1) = P (t2)

Fig. 4. The difference between a crossing (i) and a touch (ii) at t2.

the fact that the heading in tk is quasi overwinded in terms of the heading in
the hit point.

Those observations lead to the conjecture that whenever the curve hits an
obstacle at Hk and there exists a point tk with P (Hk) = P (tk), then ϕ(tk) −
ϕ(Hk) < π should hold. We will refer to this as the obstacle condition. In the
rest of this chapter, we will show that both conditions are sufficient.

Definition 1. Let K be the class of curves in Cfree∪Chalf that satisfy the following
conditions:

(i) The curve circles an obstacle in a counter-clockwise direction.
(ii) Every leave point belongs to a vertex of an obstacle.
(iii) ∀t1, t2 ∈ C : P (t1), P (t2) ∈ Cfree ⇒ |ϕ(t1) − ϕ(t2)| < π (Free space condi-

tion).
(iv) ∀Hi, t ∈ C : P (t) = P (Hi) ⇒ ϕ(t) − ϕ(Hi) < π (Obstacle condition).

Obviously, the curve of the error-free pledge algorithm is a curve in K. The
curves in K have two important properties that will be shown in the following
two lemmata.

Lemma 2. A curve C ∈ K cannot cross itself.

Note, that a curve of K can touch itself, see Fig. 4.

Proof. Let us assume, C crosses itself. Consider the first crossing of C, i. e., there
are two parameters t1 and t2 with t1 < t2 and P (t1) = P (t2), where a crossing

The Pledge Algorithm Reconsidered 171

P (t1) = P (t2)P (t1) = P (t2) ϕ(Hi) := 0

ti
Hi

Hk
Hi

γ

Fig. 5. A counterclockwise turn and a crossing respectively no crossing.

Hk

tk

Hi

Hi
Hk

P (t1) = P (t2)

(i) (ii)

P (t1) = P (t2)

γ
t2

γ

Fig. 6. A clockwise turn and a crossing respectively no crossing.

occurs in P (t2) and no crossings exist before t2. The curve C will make either
a counterclockwise or a clockwise loop between t1 and t2. If this first crossing
happens in the free space, the curve will violate the free space condition, so the
first crossing could occur only in Chalf.

Let us consider the case of a counterclockwise loop, see Fig. 5(i). The curve
hits an obstacle at Hi, makes a counterclockwise turn, meets P (Hi) for ti again
and has a crossing for t2 > ti > Hi. Note, that there is no crossing, if the point
P (Hi) is not met between t1 and t2, see Fig. 5(ii).

W. l. o. g. we assume ϕ(Hi) = 0. The loop may leave the obstacle or not,
however, we reach ti with the heading ϕ(ti) + (−γ) = 2π. At P (Hi) the robot
turns clockwise with angle γ to follow the obstacle boundary, so −π < γ < 0
must hold. Hence ϕ(ti) is greater than π and the obstacle condition is violated.

Now we look at a clockwise turn. The curve hits an obstacle at Hi, follows
the obstacle and leaves the obstacle. Eventually, it returns to the obstacle at
another hit point Hk > Hi and has a crossing at t2, see Fig. 6(i). The point
P (Hk) has to be met before at tk between Hi and t1. Otherwise the curve only
touches itself and there is no crossing at t2, see Fig. 6(ii).

Let ϕ(H+
k) denote the heading immediately after the robot has turned in

Hk, thus ϕ(H+
k) = ϕ(Hk) + γ. As above we have −π < γ < 0. On the other

hand, the curve has made a full clockwise turn between tk and H+
k , therefore

ϕ(H+
k) = ϕ(tk) − 2π. Finally, the obstacle condition has to be fulfilled, too:

ϕ(tk) − ϕ(Hk) < π

⇔ ϕ(H+
k) + 2π − ϕ(Hk) = ϕ(Hk) + γ + 2π − ϕ(Hk) < π

⇔ γ < −π

172 Tom Kamphans and Elmar Langetepe

It follows that the first crossing cannot exist, and—by induction—the curve
cannot cross itself. ��
Lemma 3. A curve C ∈ K will hit every edge in the environment at most once.

ee
Hi

γiγk

Hi
Hk

γi γk

Hk

�
(i) (ii)

�

Fig. 7. A curve that hits an edge twice.

Proof. Let us assume, the curve C will hit an edge e more than once: after a first
hit at Hi the robot moves around and hits e again at Hk, see Fig. 7. At P (Hi)
respectively P (Hk) the robot turns clockwise to follow the edge e, therefore
−π < γi, γk < 0. Let ϕ(H+

i) and ϕ(H+
k) be defined as in the proof of Lemma 2.

W. l. o. g. we assume ϕ(H+
i) = 0. Since the curve in H+

i and H+
k follows the

same edge e, the headings ϕ(H+
i) and ϕ(H+

k) must be mod 2π the same, i. e.,
ϕ(H+

k) = 2kπ, k ∈ ZZ. For k 	= 0, with ϕ(Hi) = −γi and ϕ(Hk) = ϕ(H+
k)−γk it

follows that |ϕ(Hk) − ϕ(Hi)| = |2kπ − γk + γi| > π and the free space condition
would be violated.

Therefore, we can assume k = 0 and ϕ(H+
k) = 0. Consider the part of C

between the first and the second visit of P (Hk) (in a situation as shown in
Fig. 7(i)) respectively the curve between the consecutive visits of P (Hi) (in a
situation as shown in Fig. 7(ii)). If this loop, �, has no crossings, then � is a jordan
curve and C makes a ±2π turn in �. Thus ϕ(H+

k) equals ±2π, in contradiction
to our assumption. Hence the curve between the two visits of e must have at
least one crossing. But this contradicts to Lemma 2. ��

Finally, with Lemma 2 and Lemma 3 we are able to show that the conditions
from Definition 1 are sufficient to solve our problem.

Theorem 4. A robot, whose path follows a curve C ∈ K, will escape from an
unknown maze, if this is possible at all.

Proof. A curve that meets the conditions from Definition 1 will hit every edge
in the environment at most once. Therefore the robot will either escape at the
latest after it has visited all edges, or it will be trapped, because there is no
escape from the maze. ��

4 Applications

Within this section we discuss the practical relevance of Theorem 4. What con-
sequences does it have for the design of a robot that should be able to leave an
unknown maze?

The Pledge Algorithm Reconsidered 173

’Escaped’

s

Π

C

Fig. 8. A curve and a related robot’s path.

Still we have to discuss, what it means that the robot follows a curve C ∈ K.
In fact, the deviation from the robot’s path, Π, and C can be as large as shown
in Fig. 8. The path Π might be produced by an arbitrary strategy, C shows
the corresponding curve. The dots on Π represent the hit points in terms of
the robot’s strategy, i. e., the strategy switches from a move-through-free-space
behavior to a go-around-obstacle behavior. Amazingly it is sufficient that the
hit points met by C and Π refer to the same edges—including an imaginary
‘final edge’ which marks the successful escape from the maze. The sequence of
hit points is a kind of Ariadne’s Thread that leads the robot out of the maze.
Between the hit points the robot can do whatever it wants, it can even hit some
other edges.

More precisely let HC be the sequence of edges hit by the curve C, and
HΠ the sequence of edges that are related to a hit point of the robot, then the
following holds:

Corollary 5. A robot escapes from an unkown maze, if there exists a curve
C ∈ K, such that HC is a subsequence of HΠ .

4.1 A Simple Compass Is Sufficient

Let us now assume that the robot is equipped with an error afflicted compass.
Additionally, the robot should be able to follow walls and walk in the free space
until it detects hit points. Let the robot measure its turning angles by using
compass values. How this is implemented will depend on the specific robot.
Note, that just (even exact) compass readings without measuring turning angles
is not sufficient, because only directions mod 2π can be detected in this case.

If the compass has a measuring error less than π
2 it should be easy to ensure

that the heading of the robot in the free space remains in an intervall of]−π
2 , π

2 [.
This guarantees the free space condition at hand. Additionally, at every detected
hit point Hi we have ϕ(Hi) ∈]− π

2 , π
2 [.

174 Tom Kamphans and Elmar Langetepe

On the other side it can be assumed that it is easy to detect 2π or −2π turns
along the walls, although again error afflicted within a range of]− π

2 , π
2 [, due

to the compass inaccuracy. Therefore we can assume that the total measured
turning angle along the walls is always within a bound of]−π

2 , π
2 [away from the

exact turning angle. So while the robot follows a wall being at position t ∈ C
we have ϕ(t) < π

2 . Altogether, the obstacle condition is fulfilled.

Corollary 6. Let an unknown maze be given and let the robot be equipped with
an error afflicted compass. Let us assume that it is possible to escape from the
maze. If the accuracy of the compass is not worse than π

2 , a simple pledge-like
strategy leads to an exit of the unknown maze.

4.2 Pseudo Rectilinear Scenes

Now we assume that the environment has more or less axis-parallel walls. To be
more precise we introduce the notion of (α, β) pseudo-rectilinear polygons and
specify the robot’s ability with respect to α and β.

A convex (concave) corner of a simple polygon P is a vertex of P with outer
angle greater (smaller) than π. A simple polygon P is called pseudo-rectilinear
iff |{p | p is a convex corner of P}| = |{p | p is a concave corner of P}| + 4 .

β

α

v

e

Fig. 9. A pseudo-rectilinear polygon with anglediv(v) = α and edgediv(e) = β.

In Fig. 9 there is an example of a pseudo-rectilinear polygon. There are several
ways to measure the quality of rectilinearity of a pseudo-rectilinear polygon.
Our aim is that the robot should be able to count the turns along obstacles by
considering the number of passed convex and concave vertices. Therefore it is
important to detect whether a vertex is convex or not which gives rise to the
following definitions.

For a vertex v let � (v) denote the outer angle at v. We define the angle-
divergence at a single corner as follows (see Fig. 9):

anglediv(v) :=

{∣∣ � (v) − π
2

∣∣ : v is a concave corner∣∣ � (v) − 3π
2

∣∣ : v is a convex corner

The Pledge Algorithm Reconsidered 175

For a pseudo-rectilinear polygon P we define the angle-divergence anglediv(P)
of P by

anglediv(P) := max
v∈P

anglediv(v) .

On the other hand the robot should be able to leave an obstacle along a wall
in ‘horizontal’ or ‘vertical’ direction. For this purpose we have to consider the
divergence of the edges from the X-axis respectively Y -axis.

For an edge e = vw let edgediv(e) denote the smallest angle between e and
an axis-parallel line through v or w (see Fig. 9). For a pseudo-rectilinear polygon
P we define the edge-divergence edgediv(P) of P by

edgediv(P) := max
e∈P

edgediv(e) .

A pseudo-rectilinear polygon P is called (α, β) pseudo-rectilinear iff
anglediv(P) ≤ α and edgediv(P) ≤ β holds.

We assume that the robot measures angles at corners respectively between
its heading and a wall within an accuracy of δ, that is, the absolute difference of
the actual angle and the measured angle is smaller than δ. In order to guarantee
that convex and concave corners are detected correctly it obviously suffices to
require that α + δ < π

2 , see Fig. 10.

δ

γ

α

Fig. 10. Detecting concave and convex corners under the presence of errors α and δ.
Obviously, α + δ should not exceed π

2 .

W. l. o. g. we assume that the robot’s predefined direction is north, i. e., π
2 in

the mathematical sense. The correctness of the movement in the free space will
depend on β and δ, we have to require that the next hit point is appropriate.
First, we require that the robot’s path between a leave point and a hit point
should be monotone with respect to the leaving direction. On the other hand it
is important that the robot hits a horizontal edge at the end of its free space
movement, thus it will be able to go on counting correctly. Note, that between
two hit points the robot can hit and detect vertical walls. In this case we let the
robot simply slide along them.

We want to make sure that the robot is able to detect whether an edge is
‘horizontal’ or ‘vertical’. Naturally, if the measured angle between the robot’s
heading and an edge is smaller than 3

4π and greater than π
4 , it is reasonable that

the robot assumes that the edge is horizontal.

176 Tom Kamphans and Elmar Langetepe

In this sense it suffices to guarantee that the robots heading in the free
space lies in the range

]
π
4 + β + δ, 3

4π − β − δ
[
. For example in Fig. 11 the robot

leaves the obstacle at point p and meets edge e with heading φ. Since e should
be detected as ‘vertical’ the angle γ − δ should be greater than 3

4π. We have
γ = π−(

π − (
π
2 − β

) − φ
)

and therefore we require (γ−δ) = π
2 −(β+δ)+φ > 3

4π
which in turn is equivalent to φ > π

4 +β + δ . With similar arguments we get the
upper bound of the range

]
π
4 + β + δ, 3

4π − β − δ
[
.

φ

γ

p

δ
β

e

Fig. 11. Detecting ‘horizontal’ and ‘vertical’ edges under the presence of errors β and δ.

We assume that the robot counts convex and concave corners rather than
counting angles at obstacles. With respect to the leaving direction at a leave
point the robot always can start with a heading in the range

[
π
2 − β, π

2 + β
]
.

Altogether, according to the range above, it suffices to require that the robot
should be able to guarantee this heading up to an angle π

4 −δ−2β ≥ 0. Obviously,
2β ≥ α holds. Therefore the condition α+δ < π

2 is already fulfilled, if π
4 −δ−2β ≥

0 holds.

Corollary 7. Let an unknown maze with a set of (α, β) pseudo-rectilinear poly-
gons be given. Let the robot be able to measure angles within an accuracy of δ.
Let us assume that it is possible to escape from the maze.

If the robot is able to guarantee its heading in the free space up to an angle
π
4 − δ − 2β, a simple pledge-like strategy lead to an exit of the unknown maze.

4.3 Exact Free Motion

Now let us assume that the robot is able to move a straight path between obsta-
cles, just its angle counter is inaccurate in some way. Let βi denote the difference
between the real angle and the measured angle at the ith turn and n the number
of vertices in the environment.

Lemma 8. If the robot is able to move a straight path in the free space and

ensures that
∣∣∣ �∑

i=k

βi

∣∣∣ < π holds for all k ≤ � ≤ m, where m denotes the number

The Pledge Algorithm Reconsidered 177

of turns the robot has made so far, then it will be able to escape from an unknown
maze.

Proof. The new condition implies that the absolute value of the measuring error
that is the difference between the robot’s heading and its angle counter, never
exceeds π. Now we have to show that our new condition does not violate the
conditions from Definition 1.

First, let us assume that the free space condition is not met, so there must
be two points t1, t2 in the free space where |ϕ(t1) − ϕ(t2)| ≥ π holds. W. l. o. g.
we define ϕ(t1) = 0. Since the robot moves a straight line in the free space, the
headings at the leave point, the following hit point and all points between them
must be the same. So there must be a leave point Lk with |ϕ(Lk)| = |ϕ(t2)| ≥ π.
But the robot leaves an obstacle only, if its angle counter has reached zero, so
the absolute value of the measuring error in Lk is at least π.

Second we assume, the obstacle condition would be violated. Then there must
be an obstacle Pi with a hit point Hk and another point tk with P (tk) = P (Hk),
such that ϕ(tk) − ϕ(Hk) > π holds. Let w. l. o. g. ϕ(Hk) = 0, then ϕ(tk) ≥ π
holds, but the angle counter can’t be greater then zero, since the robot leaves
the obstacle as soon as the counter becomes zero. So the difference between the
robot’s heading and its angle counter must be at least π. ��

Now, let βmax := max βi. With Lemma 3 it is easy to see that the robot visits
at most n2 vertices, and we have the following result:

Corollary 9. A robot that guarantees |βmax| < π
n2 is able to escape.

5 Conclusion

We considered the pledge algorithm under errors in sensors and motion and
established sufficient requirements for the robot for leaving an unknown maze.
Especially, we showed, that a robot equipped with a simple compass will fulfill
this task, we gave upper bounds for errors in pseudo rectilinear mazes and for
robots with correct motion. Furthermore, in Corollary 5 we gave a framework
for proving the correctness of arbitrary strategies for leaving mazes.

Within a simulation environment we have incorporated several sources of
errors into an implementation of the pledge algorithm, see [6]. Next, we are
going to implement the pledge algorithm for a Pioneer 2 AT Robot and will
further observe its behavior on pseudo rectilinear mazes and other error afflicted
settings. We are quite sure that on smooth terrains our robot will be able to
fulfill the required conditions.

Acknowledgement

We would like to thank Peter Gritzmann for pointing out the problem and Rolf
Klein for helpful discussions.

178 Tom Kamphans and Elmar Langetepe

References

1. H. Abelson and A. A. diSessa. Turtle Geometry. MIT Press, Cambridge, 1980.
2. M. A. Batalin and G. S. Sukhatme. Efficient exploration without localization. In

Proc. IEEE Internat. Conf. Robot. Autom., 2003.
3. P. Berman. On-line searching and navigation. In A. Fiat and G. Woeginger,

editors, Competitive Analysis of Algorithms. Springer-Verlag, 1998.
4. X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environ-

ment I: The rectilinear case. J. ACM, 45(2):215–245, 1998.
5. P. Gritzmann. Personal communication via Rolf Klein.
6. U. Handel, T. Kamphans, E. Langetepe, and W. Meiswinkel. Polyrobot - an

environment for simulating strategies for robot navigation in polygonal scenes.
Java Applet, 2002. http://web.informatik.uni-bonn.de/I/GeomLab/Polyrobot/.

7. A. Hemmerling. Labyrinth Problems: Labyrinth-Searching Abilities of Automata.
B. G. Teubner, Leipzig, 1989.

8. F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration prob-
lem. SIAM J. Comput., 31:577–600, 2001.

9. C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the competitive com-
plexity of navigation tasks. In H. B. Hendrik I. Christensen, Gregroy D. Hager and
R. Klein, editors, Sensor Based Intelligent Robots, volume 2238 of LNCS, pages
245–258, Berlin, 2002. Springer.

10. I. Kamon and E. Rivlin. Sensory-based motion planning with global proofs. In
Proc. 13th IEEE Internat. Conf. on Robotics and Automation, pages 814–822, 1997.

11. S. L. Laubach. Theory and Experiments in Autonomous Sensor-Based Motion
Planning with Applications for Flight Planetary Microrovers. Ph.D. thesis, Cali-
fornia Institute of Technology, Pasadena, CA, 1999.

12. V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,
2:403–430, 1987.

13. J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701.
Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

14. S. Rajko and S. M. La Valle. A pursuit-evasion bug algorithm. In Proc. IEEE
Conf. Robotics Automat., 2001.

15. N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyengar. Robot navigation in un-
known terrains: introductory survey of non-heuristic algorithms. Technical Report
ORNL/TM-12410, Oak Ridge National Laboratory, 1993.

16. M. Sharir. Algorithmic motion planning. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 40, pages
733–754. CRC Press LLC, Boca Raton, FL, 1997.

17. B. Yamauchi, A. Schultz, and W. Adams. Mobile robot exploration and map-
building with continuous localization. In Proc. IEEE Internat. Conf. Robot. Au-
tom., 1998.

	1 Introduction
	2 Preliminaries
	3 Sufficient Conditions
	4 Applications
	4.1 A Simple Compass Is Sufficient
	4.2 Pseudo Rectilinear Scenes
	4.3 Exact Free Motion

	5 Conclusion
	References

