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Abstract

Abstract Voronoi diagrams [21] were designed as a unifying concept that should include as
many concrete types of diagrams as possible. To ensure that abstract Voronoi diagrams, built
from given sets of bisecting curves, are finite graphs, it was required that any two bisecting
curves intersect only finitely often; this axiom was a cornerstone of the theory. In [12],
Corbalan et al. gave an example of a smooth convex distance function whose bisectors have
infinitely many intersections, so that it was not covered by the existing AVD theory. In this
paper we give a new axiomatic foundation of abstract Voronoi diagrams that works without
the finite intersection property.

Keywords: Abstract Voronoi diagrams, computational geometry, distance problems,
Voronoi diagrams.

1 Introduction

Voronoi diagrams belong to the most interesting and useful structures in geometry. Dating back
to Descartes [13], and known to mathematicians ever since (see, e. g., Gruber [16]), Voronoi
Diagrams were the topic of a seminal paper by Shamos and Hoey [32] that helped creating a
new field, computational geometry. The general idea is quite natural. There is a space on whom
some objects, called sites, exert a certain influence. Each point of the space belongs to the
region of that site whose influence is strongest. Most often influence is reciprocal to distance.
Meanwhile, CiteSeer lists more than 4800 related articles on Voronoi diagrams. Surveys focussing
on their structural and algorithmic aspects were presented by Aurenhammer [6], Aurenhammer
and Klein [7], Fortune [15], and, for generalized Voronoi diagrams, by Boissonnat et al. [9].
Beyond their value to computer science, Voronoi diagrams have important applications in many
other sciences; prominent examples can be found in Held [17] and in Okabe et al. [30].

For many years, computational geometers have studied Voronoi diagrams in the plane that
differed by the types of sites and distance measures used. Typically, algorithms were hand-
tailored to fit a particular setting. This situation called for a unifying view. An elegant structural
approach was by Edelsbrunner and Seidel [14] who suggested to define general Voronoi diagrams
as lower envelopes of suitable “cones”. Independently, Abstract Voronoi Diagrams (AVDs) were
introduced by the first author in [20], as a unifying concept for both, structure theory and
algorithmic computation.

The basic observation behind AVDs was that Voronoi diagrams are built from systems of
bisecting curves that have certain combinatorial properties in common, whereas the nature of
the sites and of the distance function are of secondary importance. A challenge was in finding
a small set of simple axioms for bisecting curve systems. They should ensure that a Voronoi
diagram formed from such a curve system has desirable structural properties (like being a finite
plane graph of linear complexity), and that it can be efficiently computed. At the same time,
this approach should be as general as possible.
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In order to achieve the goals just mentioned, AVDs were defined in the following way. For
any two elements p, q of a set S of indices, also referred to as sites, a curve J(p, q) was given,
that splits the plane into two unbounded open domains. One of these domains was labeled by
p, the other by q; these labels were part of the definition of J(p, q). The curve itself was added
to one of the two domains according to some global order ≺ on S. The Voronoi region of p was
defined as the intersection of all sets associated with p; detailed definitions will be be given in
Section 5.

Now three properties were required of the given curves and of order≺. Voronoi regions should
be path-connected, and their union should cover the whole plane. Moreover, any two curves
J(p, q), J(r, s) should intersect only finitely often. These requirements are met, for example, by
the Euclidean Voronoi diagrams of points or line segments, additive weights, power diagrams,
and all convex distance functions whose circles are semi-algebraic.

It turned out that these axioms were strong enough to ensure that abstract Voronoi diagrams
have many of the properties found in diagrams based on concrete sites and distance functions,
and that they can be constructed efficiently.

The finite intersection assumption was instrumental in analyzing the structure of abstract
Voronoi diagrams. It was applied twice. First, in proving the topological fact that in a neigh-
borhood of any point v, the bisecting curves passing through v form a star; see the “piece of
pie” Lemma 2.3.2 [21]. This fact allowed a local view on which combinatorial definitions could
be based. Second, the finite intersection property was explicitly used to guarantee that abstract
Voronoi diagrams are finite planar graphs; see Lemma 2.4.2 [21].

Three asymptotically optimal AVD algorithms have been developed, each for a certain sub-
class of AVDs. A deterministic O(n log n) divide & conquer algorithm [21], based on work by
Shamos and Hoey [32] and by Chew and Drysdale [10], for situations where recursive partitions
with cycle-free bisectors are guaranteed; a deterministic linear time algorithm [23] for situations
resembling “general convex position”, based on the technique by Aggarwal et al. [2], and an
O(n log n) randomized incremental construction algorithm [24] for AVDs whose regions have
path-connected interiors, based on work by Clarkson and Shor [11].

McAllister et al. [5], Ahn et al. [3], Karavelas and Yvinec [19], Abellanas et al. [1], Aichholzer
et al. [4], and Bae and Chwa [8] presented new types of Voronoi diagrams that were under the
umbrella of the AVD concept. The notion of abstract Voronoi diagrams has been generalized
to furthest site diagrams by Mehlhorn et al. [28], to dimension 3 by Lê [25], and to a dynamic
setting by Malinauskas [26]. A slightly simplified version of abstract Voronoi diagrams has been
implemented in LEDA by Seel [33].

But Corbalan et al. [12] gave an example of a convex distance function whose bisectors have
an infinite number of intersections; its unit circle is smooth, but not semi-algebraic. The existing
AVD concept, with its definitions and proofs relying on the finite intersection property, did not
cover this example.

The purpose of this paper is in proving that abstract Voronoi diagrams can be defined and
constructed without the finite intersection assumption. In fact, the other two axioms—that
Voronoi regions be path-connected and cover the plane—are just strong enough to imply what
is needed. Although the proof of this fact requires new techniques quite different from those used
in [21, 24], we think this effort is well-invested. First, the class of concrete Voronoi diagrams
covered by the AVD concept grows; in particular, all convex distance functions are included now.
Second, with one axiom less to check, applying AVDs becomes easier. Third, there is scientific
value (and aesthetic pleasure) in minimizing axiomatic systems.

Some care is necessary in dealing with general curves that can intersect each other infinitely
often. To keep the analysis simple, we require, in this paper, that not only the Voronoi regions,
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but also their interiors, are path-connected. This was also postulated for the randomized in-
cremental algorithm in [24]. It helped to avoid the complications in [21] that were caused by
the fact that Voronoi edges and vertices could form connections between several parts of one
Voronoi region. Our requirement also allows us to abandon the order ≺, which was used to
distribute the bisecting curves among the sites.

The rest of this paper is organized as follows. In Section 3 we state the new set of axioms,
and derive some preliminary facts. The main part is Section 4, where we show that AVDs
based on the new axioms are finite plane graphs, without resorting to the finite intersection
assumption. This is accomplished in the following way. First, we prove that a bisecting curve
J(p, q) cannot more than twice alternate between the domains separated by some curve J(p, r),
without disconnecting a Voronoi region; see Lemma 6.1 This allows us to analyze how J(p, q)
and J(p, r) can behave in the neighborhood of an intersection point, without having a “piece
of pie” lemma available. For sets S of size 3 we show, in Lemma 8, that each point w on the
boundary of a Voronoi region is accessible from this region. That is, there exists an arc α with
endpoint w such that α without w is fully contained in the Voronoi region.2

Using an elegant argument by Thomassen [34], accessibility implies that an abstract Voronoi
diagram of three sites contains at most two points that belong to the closure of all Voronoi
regions. From this one can directly conclude that AVDs of many sites are finite plane graphs;
see Theorem 10. Now a piece of pie lemma can be shown at least for the Voronoi edges meeting
at a Voronoi vertex, which is sufficient for our purposes.

In Subsection 4.3 we show that a curve system for index set S fulfills our axioms iff this
holds for each subset S′ of size three. This fact was observed in [22] for the old AVD model; the
proof given in Subsection 4.3 is new and more general.

In Section 5 we address the construction of abstract Voronoi diagram based on the new
axioms. With the finite intersection assumption and order ≺ removed, the class of curve systems
to which randomized incremental construction can be applied, is now strictly larger than in [24].
Divide & conquer can be applied if acyclic partitions are possible, as in [21]; but curve systems
causing the interior of Voronoi regions to be disconnected are no longer admissible. By this
restriction, the divide & conquer algorithm becomes considerably simpler.

2 Acknowledgement

The authors would like to thank the anonymous referees for their careful reading of the first
version of this paper, and for their valuable comments and suggestions.

3 The new AVD axioms

We are given a finite set S of indices (representing sites), and, for any two indices p "= q of S, a
curve J(p, q) = J(q, p) that splits the plane into two unbounded domains, labeled D(p, q) and
D(q, p).3 These labels are assigned to the two domains as part of the definition of J(p, q); see
Figure 1. We define, for each p ∈ S, the set

VR(p, S) :=
⋂

q∈S\{p}

D(p, q), (1)

1One should observe that both curves are associated with the same site, p. In the old AVD model [21], this
observation was an easy consequence of the fact that AVDs are finite plane graphs.

2By the Jordan curve theorem and its inverse, Jordan curves are characterized by accessibility; see Theorem 4.
3Informally, D(p, q) and D(q, p) will sometimes be called the “half-planes” defined by J(p, q).
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J(p, q)
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D(q, p)

Figure 1: A bisecting curve.

and let

V (S) := R2 \
⋃

p∈S

VR(p, S). (2)

Now we state which axioms the given curves must fulfill.

Definition 1 The curve system J := {J(p, q); p "= q ∈ S} is called admissible if the following
axioms are fulfilled.

A1) Each curve J(p, q), where p, q ∈ S, is mapped to a closed Jordan curve through the north
pole by stereographic projection to the sphere.4

A2) For each subset S′ ⊆ S and for each p′ ∈ S′, the set VR(p′, S′) is path-connected 5

A3) For each subset S′ ⊆ S, we have

R2 =
⋃

p′∈S′

VR(p′, S′).

Here, A denotes the topological closure of a set A in the Euclidean topology.

Definition 2 For an admissible curve system J we call the set VR(p, S) the Voronoi region of
p with respect to S, whereas V (S) is called the Voronoi diagram of S.

Example. Figure 2 (i) shows an admissible curve system for S = {p, q, r}, and the resulting
Voronoi diagram (ii). An index p placed closely to a bisecting curve J(p, q) indicates on which
side of J(p, q) domain D(p, q) is located.

In this example we observe some phenomena that cannot occur for Euclidean bisectors of
points. There are points like a in the intersection of two bisecting curves J(p, r) and J(q, r) that
do not lie on the third curve, J(p, q). A point like w that is included in all three bisecting curves
need not be a Voronoi vertex. The intersection of two bisecting curves, like J(p, r) and J(q, r),
consists of an infinite number of connected components, curve segments or single points. These
components may have accumulation points. In fact, in Figure 2 there is an infinite sequence of
intersection points ai ∈ J(p, r) ∩ J(q, r) that converge towards a ∈ J(p, r) ∩ J(q, r), such that
each segment of J(q, r) between ai and ai+1 is disjoint from J(p, r). Therefore, one must be
careful not to speak of “the first point of J(q, r) on J(p, r) to the left of point a”, etc..

4More precisely, the projected image is continuously completed, by the north pole, to a closed Jordan curve.
5We need not distinguish between path-connectedness and arc-connectedness because the Euclidean plane is

Hausdorff. Thus, two points of a path-connected set can be connected not only by a path, which is a continuous
image of [0, 1], but even by an arc which is image of [0, 1] under a homeomorphism, that is, of a bijective,
bi-continuous mapping.
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Figure 2: An admissible curve system (i) and the resulting Voronoi diagram (ii).

3.1 Preliminaries

In this section, and in the following one, we assume that J is an admissible curve system fulfilling
axioms A1, A2, A3 of Definition 1, unless stated otherwise.

First, we observe that the Voronoi diagram V (S) can also be characterized in the following
way; compare Lemma 2.2.1 in [21].

Lemma 3 Let J be a system of admissible curves for index set S. Then,

V (S) =
⋃

p $=q∈S

VR(p, S) ∩ J(p, q)

=
⋃

p $=q∈S

VR(p, S) ∩ VR(q, S)

Proof. “⊆:” If z ∈ V (S) then z ∈ VR(p, S) \ VR(p, S) for some p ∈ S, by axiom A3

and the definition of V (S). Hence, there exists a site q "= p such that z /∈ D(p, q). Assume
z ∈ D(q, p). As this set is open, it would contain a whole neighborhood of z. But this contradicts
z ∈ VR(p, S) ⊂ D(p, q). Therefore, z ∈ J(p, q), thus proving the upper inclusion. The lower one
is shown by contradiction. If no set VR(q, S), where q "= p, contained z then, by finiteness of S,
for a neighborhood U(z),

U(z) ⊆
⋂

q $=p

VR(q, S)
c

=




⋃

q $=p

VR(q, S)




c

⊆ VR(p, S)

would hold, contradicting z /∈ VR(p, S).
“⊇:” Because of

VR(p, S) ∩ VR(q, S) ⊆ D(p, q) ∩ D(q, p) ⊂ J(p, q)
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we need to consider only the upper inclusion. Let us assume that

z ∈ VR(p, S) ∩ J(p, q).

If z were contained in some Voronoi region VR(r, S) then it would be an interior point of this
region. Because of z ∈ VR(p, S) this would imply r = p. But if z lies in the interior of the
Voronoi region VR(p, S), it cannot be situated on J(p, q), contradicting our assumption. Hence,
z ∈ V (S). !

In order to prove the finiteness of the Voronoi diagram as a graph, we shall employ some
properties of plane curves that are sometimes stated as part of the Jordan curve theorem.

Theorem 4 Let C be a plane curve, homeomorphic to a circle. Then R2 \ C consists of two
domains D1,D2 with common boundary C. For each point z ∈ C there exists a neighborhood U
whose boundary is homeomorphic to a circle, such that U \ C consists of exactly two connected
components. Point z is accessible from each domain U ∩ Di, that is, for each p ∈ U ∩ Di there
exists an arc α from p to z such that α minus its endpoint z belongs to U ∩ Di.

Theorem 4 is a direct consequence of the stronger Jordan-Schönflies theorem, which states
that a homeomorphism between a circle and a closed curve, C, in the plane can be extended to
the whole plane, such that the interior of the circle is mapped onto the interior domain of C,
and the circle’s exterior to the exterior of C; cf. Rinow [31], for example. Theorem 4 also holds
for closed curves on the sphere. Hence, it holds for the bisecting curves J(p, q) we are dealing
with, because they are mapped to Jordan curves through the north pole under stereographic
projection. For simplicity, a homeomorphic image of the circle, or a homeomorphic image of the
line that bisects the plane, will be called a Jordan curve in the sequel. As a trivial consequence
of Theorem 4, every neighborhood of a point z on a Jordan curve C contains points of both
domains Di.

It is interesting to observe that the converse of Theorem 4 is also true. If C is a compact
set whose complement in the plane consists of two connected components, such that each point
of C is accessible from both, then C is a closed Jordan curve; see Thomassen [34] for a simple
proof.

The following transitivity lemma will be a handy tool. Its claim would be trivial if we could
read z ∈ D(p, q) as “z is closer to p than to q”. For the old AVD model [21], a similar statement
with a slightly different proof was made in Lemma 3.5.1.1.

Lemma 5 Let p, q, r ∈ S. Then D(p, q) ∩ D(q, r) ⊆ D(p, r) holds.

Proof. Let z ∈ D(p, q) ∩ D(q, r). Point z must be contained in one of D(r, p), J(r, p),D(p, r).
If z were contained in D(r, p), it could not lie in any of the closed Voronoi regions

VR(q, S′) ⊆ D(q, p) = D(q, p) ∪ J(q, p)
VR(r, S′) ⊆ D(r, q) = D(r, q) ∪ J(r, q)
VR(p, S′) ⊆ D(p, r) = D(p, r) ∪ J(p, r)

for S′ := {p, q, r}. This is impossible since these three sets cover R2 by axiom A3.
Suppose z ∈ J(r, p). By Theorem 4, there exists an arc α with endpoint z such that α\{z} ⊂

D(r, p). With z, even a neighborhood U of z is contained in the open set D(p, q)∩D(q, r). Inside
U , path α contains a point z′ ∈ D(p, q)∩D(q, r)∩D(r, p), which leads to the same contradiction
as before. Consequently, the third case applies, that is, z ∈ D(p, r). !

We note that Lemma 5 neither holds for the closures of the sets D( , ), nor for the bisecting
curves themselves.
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4 The graph structure of V (S)

The main goal of this section is in proving that V (S), where |S| = n, is a finite, plane graph
with ≤ n faces, even though our bisecting curves do not fulfill the finite intersection property.
To this end, we consider first an abstract Voronoi diagram of three sites, and show, in Lemma 8,
that each point w on a region boundary is accessible from this Voronoi region. As we do not
have a piece of pie lemma available, which would grant us a clear view to a neighborhood of w,
this requires some local analysis on the bisecting curves passing through w. This analysis will
be based on the following Lemma 6, supported by Lemma 7.

Then the proof proceeds as follows. By Lemma 3, each point of V (S) lies on the boundaries
of at least two regions. We show that only finitely many points can be situated on three or
more region boundaries; see Lemma 9. From this fact, the finiteness of V (S) will be derived in
Theorem 10.

4.1 Three sites

Let us consider the Voronoi region of a site p in the diagram V (S) where S = {p, q, r} consists
of only three sites. For convenience we may assume that J(p, q) is a horizontal line, and that
D(p, q) equals the lower half plane. The following lemma states that J(p, r) can change at most
twice between D(p, q) and D(q, p).

Lemma 6 There cannot be four points consecutively visited by J(p, r) that belong alternately to
D(p, q) and D(q, p).

Proof. Suppose that our claim is wrong, and that J(p, r) does visit four points a1, a2, a3, a4,
in this order, such that a1, a3 ∈ D(q, p) and a2, a4 ∈ D(p, q). The following facts will be helpful
in deriving a contradiction. By π◦ we denote the relative interior of an arc π, that is, the arc
without its endpoints.

Facts. We can connect

1. points a2 and a4 by an arc π such that π◦ is contained in VR(p, S),

2. points a2 and a4 by an arc ρ such that ρ◦ ⊂ VR(r, S), and

3. points a1 and a3 by an arc σ such that σ◦ ⊂ VR(q, S),

see Figure 4.

Proof. 1.) By Theorem 4, point a2 is accessible by an arc α2 from D(p, r). Since a2 is an
interior point of D(p, q), α2 can be shortened to lie in D(p, q). Then, α2, without its endpoint
a2, is contained in D(p, q) ∩ D(p, r) = VR(p, S). Similarly, there is an arc α4 accessing point
a4 from VR(p, S). W. l. o. g., α2 and α4 are disjoint. Their respective endpoints a′2 and a′4 in
VR(p, S) can be connected by an arc α entirely running in VR(p, S), by axiom A2. Should α2

intersect α in a point different from a′2, let a′′2 denote the first point of α met when traversing
α2 from a2 towards a′2.6 We cut both α2 and α at point a′′2, and perform similar surgery on
α4, if necessary. The concatenation of the three resulting arcs yields an arc with the properties
desired; see Figure 37.

6This point is well-defined. Indeed, if f(t) is a parametrization of α2 satisfying f(0) = a2, then
t′′ := sup{t ≥ 0; f([0, t]) ⊂ αc} exists, and f(t′′) = a′′

2 holds.
7One should observe that in Figures 3 and 4 domain D(r, p) is depicted to be above curve J(p, r). Our proof

does not make use of such an assumption.
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J(p, r)

a2 a4

a′2
a′4

α

α4

α2

a′′2

Figure 3: Constructing an arc that runs through VR(p, S) and connects a2 to a4.

2.) Point a2 is also accessible from D(r, p) by an arc β2. Clearly, β◦
2 lies in D(r, p) ∩D(p, q) ⊆

D(r, q), by Lemma 5, hence in VR(r, S). The rest of the proof is analogous to the proof of (1).
3.) Point a1 is accessible from D(p, r) by an arc γ1 contained in D(q, p). Thus, γ◦1 is contained
in D(q, p) ∩ D(p, r) ⊆ D(q, r), hence in VR(q, S). The same holds for a3, and we continue as
before. This concludes the proof of the three facts. !

J(p, q)
q
p

J(p, r)

r p

a1

a2

a3

a4π

ρσ

D

Figure 4: Domain D contains point a3, but not a1. Hence, path σ must intersect either ρ or π,
in order to connect a1 and a3. Both alternatives are impossible because all arcs are contained
in different Voronoi regions.

To complete the proof of Lemma 6, we argue as follows. Together, arcs π ⊂ VR(p, S) and
ρ ⊂ VR(r, S) form a closed Jordan curve; let D denote its interior domain, as shown in Figure 4.

We observe that J(p, r) cannot intersect the relative interiors of either path π or ρ, because
these are contained in D(p, r) and D(r, p), respectively. Being a simple curve, J(p, r) can pass
through points a2 and a4 only once. On the other hand, J(p, r) must pass through D to separate
π from ρ. Therefore, the segment of J(p, r) between a2 and a4 is fully contained in domain D,
while the two unbounded complementary segments of J(p, r) stay outside. Consequently, we
have a3 ∈ D and a1 ∈ Dc. But the path σ connecting a1 to a3 is contained in VR(q, S) and,
therefore, unable to intersect the boundary of D, which belongs to the closures of the regions of
p and r. This contradiction completes the proof of Lemma 6. !

The next step is in proving that, for Voronoi diagrams of three sites, each point w on the
boundary of a Voronoi region is accessible from this region; see Lemma 8 below. To this end, we
need to discuss the different ways in which two bisecting curves J(p, q) and J(p, r) can intersect
at some point w. Let g(t) be a parametrization of J(p, r) such that D(p, r) lies on the right
hand side of J(p, r) as t tends to +∞. Suppose that g(0) = w holds. As t approaches 0 from
below, the points g(t) cannot alternate between D(p, q) and D(q, p) infinitely often, thanks to
Lemma 6. Thus, there exist δ, δ′ > 0 such that G− := g((−δ, 0)) is included in D(p, q) or in
D(q, p). The same holds for G+ := g((0, δ′)). Analogously, there are two segments F−, F+ of
J(p, q) before and after w, each of which is contained in one of the sets D(p, r) or D(r, p); see
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Figure 5 for an example. Let us first assume that none of the segments G−, G+ is fully contained

q
p

p
r

F− F+

G+

G−

w

Figure 5: Here G− stays in D(q, p), while G+ runs in D(p, q). Moreover, F− ∈ D(p, r) and
F+ ∈ D(r, p).

in J(p, q), and none of F−, F+ in J(p, r).8 To facilitate our analysis, we first consider curve
J(p, q) and distinguish between the following cases.

A : F−, F+ ⊂ D(p, r)
B : F− ⊂ D(p, r) and F+ ⊂ D(r, p)
C : F− ⊂ D(r, p) and F+ ⊂ D(p, r)
D : F−, F+ ⊂ D(r, p)

Analogous cases A,B,C,D are possible for J(p, r); they result from replacing r with q, and F
with G, in this definition. In principle, 16 combinations AA, AB, AC,..., DC, DD of these cases
should be considered. However, we observe that XY corresponds to Y X under the symmetry
Σ : r ↔ q, F ↔ G. Of the remaining 10 combinations, only 4 are geometrically possible, as we
shall conclude from the following lemma. Intuitively, it states that the facts “J touches J ′ at
w” and “J crosses J ′ at w” are symmetric in J and J ′.

Lemma 7 (i) If G−, G+ are contained in the closure of the same half-plane defined by J(p, q),
the same holds for F−, F+ with respect to J(p, r).
(ii) If F− ⊂ D(p, r) and F+ ⊂ D(r, p) then G− ⊂ D(q, p) and G+ ⊂ D(p, q). The same holds
with + and − reversed.

Proof. (i) Let U be a neighborhood of w, chosen by Theorem 4, such that J(p, r) ∩ U is one
connected segment contained in the union of G−, G+, and {w}. We can make U small enough to
guarantee that the part of J(p, q) passing through U is also contained in F−, F+, and {w}, but
possibly disconnected; see Figure 6. By way of contradiction, assume that G−, G+ ⊂ D(p, q),
but that there are points z ∈ D(p, r) ∩ F− and z′ ∈ D(r, p) ∩ F+ close to w on J(p, q). The
segment H of J(p, q)∩U that contains z,w, z′, divides domain U into two domains, U1 to the left
of H, and U2 to the right of H. Both have Jordan curves as boundaries. Since z, z′ are accessible
from U1, there exists an arc α1 ⊂ U1 connecting them. We can assume that α1 stays in the open
half-plane D(q, p). Namely, each of the (at most countably many) excursions of α1 to D(p, q)
can be replaced with circular arcs in D(q, p), as depicted in Figure 6.9 Since arc α1 connects
points z, z′ from both sides of J(p, r), it must meet J(p, r) at some point y ∈ U1 ∩ D(q, p). But
each point y "= w of J(p, r) in U belongs to G− or to G+, which are contained in the closure of
D(p, q), by assumption. Contradiction!

8Under this assumption, G− ⊂ D(p, q) implies the following. Moving along G− towards w, one never enters
D(q, p). One always meets another point of D(p, q), and perhaps points of J(p, q) in between. The latter may
accumulate.

9Only finitely many circular arcs are needed to this end. This can be seen as follows. Let I denote the interval
of J(p, q) connecting an exit and re-enter point of α1. For each point of I a circular neighborhood is contained in
U1. Since I is compact, finitely many of these circles cover I .
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Figure 6: Illustrating the proof of Lemma 7.

(ii) Now assume F− ⊂ D(p, r) and F+ ⊂ D(r, p), and let z ∈ D(p, r)∩F− and z′ ∈ D(r, p)∩F+

as in the proof of (i). In addition to α1, there exists an arc α2 ⊂ U2 ∩ D(p, q) connecting z
to z′. Curve J(p, r) must intersect both arcs, α1 and α2; hence, it must visit both D(q, p) and
D(p, q). Since both G− and G+ are fully contained in the closure of one of these half-planes,
there are but two possibilities. Either G− ⊂ D(q, p) and G+ ⊂ D(p, q), which is what we claim,
or G− ⊂ D(p, q) and G+ ⊂ D(q, p), which leads to a contradiction, because z ∈ D(p, r) cannot
be situated to the left of J(p, r). !

Clearly, Lemma 7 remains true under symmetry Σ introduced before Lemma 7. A quick
inspection shows that this leaves us with only 4 combinations, namely AD, DD, AA, and BC.
They are illustrated in Figure 7.

It remains to account for those cases where the curves J(p, q), J(p, r) share one or two
segments close to their intersection point w. We shall now demonstrate how to view all situations
possible as special cases of the configurations AD, DD, and BC displayed in Figure 7. The
equality and unequality signs shown in this figure indicate which curve segments may coincide
and which are supposed to be different. The case analysis given in Lemma 8 will be in accordance
with these properties.

The situations where both G− and G+ are contained in D(q, p) are included in AD or DD,
respectively, depending on the orientation of G. Otherwise, one of the segments G−, G+ lies in
D(p, q) but not in F , while the other segment is part of F . We consider both cases in turn.

If G− ⊂ D(p, q) and G+ ⊂ F , two subcases are possible: G+ = F−, which reduces to the
subcase (F+ = G− and F− ⊂ D(p, r) ) of BC under symmetry Σ, and G+ = F+, which reduces,
under Σ, to the subcase (F+ = G+ and F− ⊂ D(p, r) ) of AD.

If G+ ⊂ D(p, q) and G− ⊂ F , we have to consider the subcase G− = F−, which reduces,
under Σ, to the subcase (F− = G− and F+ ⊂ D(p, r) ) of AD, and the situation where G− = F+,
which is itself a subcase of BC.

Now we are ready to prove the main result of this subsection.

Lemma 8 Let w be a point on the boundary of VR(p, S), where |S| = 3. Then there exists an
arc α with endpoint w such that α \ {w} ⊂ VR(p, S) holds.

Proof. First, we assume that w is contained in only one bisecting curve, J(p, r). For w to belong
to the boundary of the region of p, it cannot be in D(q, p). Thus, w ∈ D(p, q). By Theorem 4,
applied to J(p, r) on the sphere, there is an arc α accessing w from D(p, r)∩D(p, q) = VR(p, S).

Now we assume that w is contained in both, J(p, q) and J(p, r). By the previous discussion,
we need only inspect the four cases sketched in Figure 7.
AD) Here an arc accessing w from D(p, q) is also contained in D(p, r), after shortening, hence
in VR(p, S).
DD) In this case D(p, q) ∩ D(p, r) is empty, in a neighborhood of w, so that point w cannot be
on the boundary of VR(p, S), in contradiction to our assumption.
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Figure 7: Four ways for J(p, q), J(p, r) to pass through a point w.

AA) Here the Voronoi region of p would be disconnected. Formally, we could find points a, b ∈
D(p, q) on G+ and G−, respectively, and connect them with paths π ⊂ VR(p, S) and ρ ⊂
VR(r, S) as in the proof of Lemma 6. The arguments presented there show that the domain
D bounded by these paths must contain point w, so that ρ has to pass above w while π stays
below J(p, q). This is in conflict with the supposed orientation of J(p, r) at w.
BC) This is the most interesting case. Let us walk along G+ backwards, towards w. Suppose
that we encounter two points b, d of F− that appear in the order (d, b) on F−, but in the order
(b, d) on G+; see Figure 8 (2). Then the Voronoi region of p would be disconnected, by the
same formal proof as for AA. Thus, all points of F− encountered on the backward walk along
G+ towards w, must be situated in the same order on both oriented segments, F− and G+, as
shown in Figure 8 (1). This means, each new point of F− we meet must be to the left of its
predecessor on F−, and, therefore, farther away from w. Consequently, a subsegment of G+

with endpoint w must be wholly disjoint from F−; let us denote it by G+ again.
Now let U be a neighborhood of w ∈ J(p, r) according to Theorem 4, small enough to

intersect only the segments F−, F+ and G−, G+ of J(p, q) and J(p, r). Let H denote the
segment of U ∩ F− adjacent to w; see Figure 8 (3). Since H ∩G+ ⊆ F− ∩ G+ = ∅, segment H,
together with parts of G+ and ∂U , form a simple Jordan curve encircling a domain D, which is
shaded grey in Figure 8 (3). Boundary point w is accessible via some arc α, where α◦ ⊂ D. Our
assumption F− ⊂ D(p, r) implies that H cannot enter D(r, p); hence, D belongs to U ∩D(p, r),
implying α◦ ⊂ D(p, r). On the other hand, at least a segment of α◦ starting from w must also
belong to D(p, q). This is because α can leave D(p, q) only through points on J(p, q) to the left
of H. Therefore, part of α◦ lies in VR(p, S) and is an access path for w. !

4.2 Many sites

By Lemma 3, the Voronoi diagram V (S) consists of all points in the plane that are contained
in the closures of at least two Voronoi regions. Now we show that only finitely many points are
contained in the boundary of three or more regions.

Lemma 9 Let B be the set of all points on the boundaries of at least three Voronoi regions in
some Voronoi diagram V (S′), where S′ ⊆ S. If |S| = n ≥ 3 then B is of size at most 2

(n
3

)
.

Proof. First, we consider the case where S = {p1, p2, p3}. If one of the three Voronoi regions is
empty, V (S) equals a single bisecting curve, and B is empty. Otherwise, we apply the following
elegant argument of Thomassen’s [34]. In each Voronoi region VR(pj , S) we choose a point
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Figure 8: Discussion of case BC depicted in Figure 7.

denoted by aj . Now suppose, by way of contradiction, that B contains three different points,
v1, v2, v3. By Lemma 8 and axiom A2, we can find arcs αi,j connecting vi to aj, such that
αi,j \ {vi} is fully contained in VR(pj , S). We may even assume that for each j, the three
arcs α1,j ,α2,j ,α3,j contained in the region of pj form a plane tree Tj rooted at aj .10 Since the
Voronoi regions of p1, p2, p3 are disjoint, the trees T1, T2, T3 are realizing a plane embedding of
the bipartite graph K3,3, which is impossible. Hence, |B| ≤ 2 holds.

Now let |S| > 3, and let v ∈ B be a point on the boundary of the Voronoi regions of
p, q, r ∈ S′ ⊆ S. Since the Voronoi regions of these indices in V (S′′), where S′′ := {p, q, r}, can
only be larger than those in V (S′), point v belongs to the region boundaries of p, q, r in V (S′′),
too. We have just shown that there are at most two such points in V (S′′). Since there are only(n
3

)
subsets S′′ of S of size 3, the claim follows. !

We recall that a finite plane graph is an embedding in the plane of a finite abstract graph,
that maps each edge e onto an arc whose endpoints are the embedded vertices adjacent to e.
Two arcs do not intersect except at a common endpoint. If the two endpoints of an edge
coincide, the edge is a loop, mapped onto a closed Jordan curve. Owing to the structure of
Voronoi diagrams, we allow for a special vertex ∞, the inverse image of the north pole under
stereographic projection to the sphere.11

Now we can prove the main result of this section.

Theorem 10 The abstract Voronoi diagram V (S), where |S| = n, is a finite plane graph of
O(n) edges and vertices.

Proof. If n = 2 then V (S) consists of a single bisecting curve with both endpoints at ∞, and we
are done. Let us assume n ≥ 3. By Lemma 3, the set V (S) consists of all points contained in the
closures of two or more Voronoi regions. The points on the boundary of three or more regions
of V (S) form a subset B′ of B, which is finite by Lemma 9. The rest of V (S) is decomposed
into sets Bp,q consisting of all points on the boundary of exactly the Voronoi regions VR(p, S)

10This can be achieved as follows. First, we choose α1,j . Then we trace α2,j from v2 to aj , and cut it at the
first point of α1,j it meets. Finally we trace α3,j from v3 to aj , and cut it at the first point of the partial tree
already constructed.

11Alternatively, one could compactify the Voronoi diagram in the way suggested in [21], by clipping the un-
bounded pieces of V (S) at a sufficiently large circle.
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and VR(q, S). Such a set Bp,q, if non-empty, consists of disjoint segments of the bisecting curve
J(p, q). We claim that each endpoint, v, of such a segment e belongs to the set B′ ∪ {∞}.

This can be seen as follows. Suppose v "= ∞. Clearly, v belongs to the closures of the regions
of both, p and q, but the extension of e beyond v on J(p, q) does not. Thus, we can either
find points of some Voronoi region VR(r, S), where r /∈ {p, q}, arbitrarily close to v on J(p, q).
Or a segment e′ of J(p, q) extending e beyond v belongs to V (S). By Lemma 3, segment e′ is
contained in the closures of the Voronoi regions of two sites, at least one of which, r, is not in
{p, q}. In either case, v in VR(r, S).

Since J(p, q) is simple, at most two segments e of Bp,q can share a point of B′. Thus, the
number of these segments is finite. We conclude that

V (S) ∪ {∞} =
⋃

p $=q∈S

Bp,q ∪ B′ ∪ {∞}

is a finite plane graph. The elements of B′ are the finite Voronoi vertices, while the edges are
the segments of the sets Bp,q. Because Bp,q and Bp′,q′ are disjoint if {p, q} "= {p′, q′}, edges can
intersect only at their endpoints. The O(n) bound follows from the Euler formula, as usual. !

Once V (S) is known to be a finite plane graph, the following “piece of pie” lemma can be
shown; for a proof see, e. g., 40.20 in Rinow [31], or compare Lemma 2.3.1 in [21].

Lemma 11 For each point v in the plane there exists an arbitrarily small neighborhood U of v,
whose boundary is a simple closed curve, such that the following holds for each subset S′ of S.
Let v ∈ V (S′). If v is interior point of some Voronoi edge e ⊂ Bp,q of V (S′) then U is divided
by e in exactly two domains, one contained in VR(p, S′), the other in VR(q, S′). Otherwise v
is a Voronoi vertex of V (S′), of degree k ≥ 3. After suitably renumbering S′, the Voronoi edges
ei adjacent to v belong to Bpi,pi+1 in counterclockwise order, where 0 ≤ i ≤ k − 1 is counted
mod k. The edges ei−1 and ei, together with ∂U , bound a piece of pie contained in VR(pi, S′);
these pieces are domains with Jordan curve boundaries. The sites p0, p1, . . . , pk−1 are pairwise
different.

The last fact can be seen as follows. Point v does not belong to any Voronoi region and can,
therefore, not form a connection between different pieces of the same Voronoi region. On the
other hand, no connecting path can “run around” some other piece, because abstract Voronoi
regions are connected and their closures are simply-connected. This follows from Lemma 2.2.4
in [21]. For convenience, we include this statement and its simple proof.

Lemma 12 Let C ⊂ VR(p, S) be a closed curve. Then each bounded connected component of
R2 \ C is contained in VR(p, S).

Proof. The complement of C consists of disjoint connected components exactly one of which,
Z∞, is unbounded. Let Z be a bounded connected component, and assume that some point
z ∈ Z does not belong to the Voronoi region of p. Then z ∈ D(q, p), for some q "= p. We may
even assume z ∈ D(q, p) because a small enough neighborhood U of z is contained in the open
set Z, and has nonempty intersection with D(q, p), so that we could pick a suitable z′ from
U . Since D(q, p) is unbounded, it contains a point y ∈ Z∞. Because D(q, p) is path-connected
there is an arc α ⊂ D(q, p) running from z to y. It must meet the curve C, which contradicts
C ⊂ D(p, q). !

One should observe that from the axioms stated in Definition 1, only A1 was used in the
proof of Lemma 12.
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4.3 Characterizing admissible curve systems

In this subsection we show that only the subsets S′ ⊆ S of size 3 need to be checked, in order
to ensure that a given curve system J = {J(p, q); p "= q ∈ S} is admissible in the sense of
Definition 1. For the old AVD model, this fact has been stated in [22], and been proven for all
bisecting curve systems whose (finitely many) pairwise intersections are proper crossings only.
Here we give a different, more general proof based on Lemmata 13 and 14 below.

We assume that J = {J(p, q); p "= q ∈ S} is a system of curves such that each J(p, q) fulfills
axiom A1 of Definition 1.

Lemma 13 With the above assumptions, we have

R2 =
⋃

p∈S

VR(p, S) ⇐⇒ ∀p, q, r ∈ S : D(p, q) ∩ D(q, r) ⊆ D(p, r).

Proof. The direction from left to right has been shown in Lemma 5 without using axiom A2.
To prove the converse direction, let z ∈ R2. For an arbitrary ε > 0 let U := Uε(z) be an
ε-neighborhood of z. As long as there exists a set D = D(p, q) such that U ∩D "= ∅ but U "⊂ D
we replace U by its open subset U ∩ D. This process terminates after at most

(n
2

)
many steps.

For the final set U , and for each pair p "= q of points from S we have

U ⊂ D(p, q) or U ⊂ D(q, p). (3)

The relation
p < q :⇔ U ⊂ D(p, q)

is anti-symmetric, transitive by the right hand side of our lemma, and, by fact (3), either p < q
or q < p must hold. Thus, < defines a total order on S. Let pε denote the minimum element
with respect to < in S. Then, for each point q "= pε in S we have U ⊂ D(pε, q) which implies
U ⊂ VR(pε, S). Thus, Uε(z) contains points of VR(pε, S). As ε tends to 0, the index pε may
vary, but since S is finite there must be a subsequence of ε tending to 0 for which all pε are the
same p. Consequently, z ∈ VR(p, S). !

Lemma 14 With the assumptions from above the following holds. If each set VR(p, S′), where
S′ ⊆ S and |S′| = 3, is path-connected then each Voronoi region with respect to some T ⊆ S is
path-connected, too.

Proof. If T = {p, q} then VR(p, T ) = D(p, q) is path-connected. For |T | = 3 the claim follows
by assumption. Let T ⊆ S be of size ≥ 4, and consider two points x, y ∈ VR(p, T ). Let t "= t′ ∈ T
be different from p. By induction, there exist an arc π that connects x, y in VR(p, T \ {t}), and
a connecting arc π′ in VR(p, T \{t′}). All points contained in both π and π′ belong to VR(p, T ).
Suppose that some point z ∈ π is not contained in VR(p, T ), and let f, g be the first points of
π′ one meets when traversing π in both directions away from z. The two segments πf,g and π′

f,g
of π,π′ between f and g form a domain, D; see Figure 9 (i).

We claim that there exists an arc αf,g ⊂ D∩VR(p, T ) from f to g. Then, by simultaneously
replacing all (countably many) segments πf,g of π with αf,g, a path connecting x, y in VR(p, T )
will result, thus proving our lemma.

This claim is shown as follows. Arcs πf,g and π′
f,g together form a loop in VR(p, T \ {t, t′}).

This region is simply-connected by Lemma 12; one should observe that axioms A2, A3 have not
been used in its proof. Hence, domain D too is subset of VR(p, T \ {t, t′}). Now we distinguish
two cases. First, we assume that the union

R := VR(t, T ) ∪ VR(t′, T )
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does not separate f from g in D. Then D \R belongs to VR(p, T ) and contains the desired arc.
In the second case, R does separate f from g in D. We observe that VR(t′, T ) cannot intersect

π, which is contained in VR(p, T \ {t}), and VR(t, T ) cannot intersect π′. Thus, both Voronoi
regions have non-empty intersections with D. Now we consider the index set S′ := {p, t, t′}. By
assumption, there exists an arc ρ connecting f and g in VR(p, S′). Arc ρ must avoid the union,
R′, of the Voronoi regions of t and t′ with respect to S′, which includes R. In the presence of
D ∩ R′, arc ρ can be homotopic with either πf,g or π′

f,g. In the first case, which is depicted in
Figure 9 (ii), ρ and π′

f,g together encircle points of VR(t, S′) ⊂ D(t, p) although they are both
contained in D(p, t), which is simply-connected. In the second case, ρ and πf,g encircle points
of VR(t′, S′) ⊂ D(t′, p), but are themselves contained in D(p, t′)—again a contradiction. !

f

g

πf,g

π′
f,g

D

f

g

πf,g

π′
f,g

VR(t, T )

VR(t′, T )

αf,g

(i)

VR(t′, S ′)

VR(t, S ′)

D ∩ R′

ρ

(ii)

Figure 9: In (i), f and g can be connected by an arc in VR(p, T )∩D. In (ii), a path ρ connecting
f and g in VR(p, {p, t, t′}) must go around the Voronoi region of t or t′.

Now we can state the result of this subsection.

Theorem 15 Let J = {J(p, q); p "= q ∈ S} be a system of curves each of which projects onto a
closed Jordan curve through the north-pole of the sphere. Suppose that for each subset S′ ⊆ S of
size 3 the Voronoi regions VR(p, S′) are path-connected, and that their closures cover the plane.
Then J is admissible in the sense of Definition 1.

5 Construction of AVDs

In this section we demonstrate that both algorithms developed for constructing abstract Voronoi
diagrams, divide & conquer [21] and randomized incremental construction [24], also work for
the AVD model presented in this paper. Since either algorithm was based on its own set of
axioms, denoted by DC-AVD for divide & conquer and by RIC-AVD for randomized incremental
construction, we also discuss how these sets differ from the new axioms introduced in Definition 1.

Since the bisecting curves our algorithms are dealing with can be rather complex objects,
some care is required in establishing the cost of building an AVD. If all curves in J were algebraic
of bounded degree, they could be described in constant space. Also, whatever elementary
operations on bisecting curves are typically necessary, could be carried out in constant time. In
general, even an elementary task, like testing two curves for intersection, may be undecidable.
Therefore it seems reasonable to separate these issues from the task of constructing V (S). To
this end, we shall assume that a set of elementary operations on bisecting curves, that may
depend on the algorithm considered, is capsuled in a basic module. Only this module can access
the curves directly. Each call to the basic module performed by our algorithm is considered one
step, just like a standard RAM operation. The algorithm is not charged for the basic module’s
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real time and space consumption, which depends on the complexity of the bisecting curves
J(p, q).

5.1 Randomized incremental construction

A randomized incremental algorithm for abstract Voronoi diagrams was first presented by
Mehlhorn et al. [27] and then generalized in [24]. The latter paper is based on the following
assumptions.

As in Definition 1, a set S of n indices is given, and for each pair p "= q of indices in S a
curve J(p, q) = J(q, p) that splits the plane into two unbounded domains, D(p, q) and D(q, p).
In addition, a total order ≺ on S is assumed to be part of the input. Now the extended Voronoi
region of p with respect to S is defined by

EVR(p, S) :=
⋂

q∈S\{p}
R(p, q),

where
R(p, q) := D(p, q)

if q ≺ p, and
R(p, q) := D(p, q) ∪ J(p, q),

if p ≺ q. In addition, a regular Voronoi region was defined as

V (p, S) := EVR◦(p, S),

where E◦ denotes the interior of E. Finally, the Voronoi diagram is defined as the union of
the boundaries of all extended Voronoi regions EVR(p, S). Then the following properties are
required.

Definition 16 The pair (J,≺), where J := {J(p, q); p "= q ∈ S}, is called admissible for RIC-
AVDs if the following axioms are fulfilled.

R1) Each curve J(p, q), where p, q ∈ S, is mapped to a closed Jordan curve through the north
pole by stereographic projection to the sphere.

R2) For any p, q, r, s in S, the intersection J(p, q) ∩ J(r, s) consists of at most finitely many
connected components.

R3) For each subset S′ ⊆ S and for each p′ ∈ S′, if EVR(p′, S′) is non-empty then V (p′, S′) is
non-empty, too, and both sets are path-connected.

R4) For each subset S′ ⊆ S, we have

R2 =
⋃

p′∈S′

EVR(p′, S′).

The following lemma shows a close connection between RIC-AVDs and our new AVD concept.

Lemma 17 If, for some order ≺ on S, curve system J is admissible for RIC-AVDs then J is
admissible for AVDs in the sense of Definition 1, and for each S′ ⊆ S and p′ ∈ S′ we have
VR(p′, S′) = V (p′, S′).
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Proof. First, we prove the equality of Voronoi regions. Let z ∈ V (p′, S′). By definition, z is
an interior point of the extended region of p′, so there is a neighborhood U of z contained in
EVR(p′, S′). Clearly, U cannot intersect a bisecting curve J(p′, q′); otherwise, U would contain
points of D(q′, p′), but such points do not belong to EVR(p′, S′). Therefore, z ∈ U lies in all
sets D(p′, q′), q′ ∈ S′, hence in VR(p′, S′). The converse inclusion is obvious.

Now assume that curve system J is admissible for RIC-AVDs. By the above, each Voronoi
region VR(p′, S′) = V (p′, S′) is path-connected, thus proving axiom A2. A point z ∈ R2 not
contained in any region VR(s′, S′) belongs to some set EVR(p′, S′) \ V (p′, S′), by R4. By the
“piece of pie” Fact 1, p. 163 [24], z is contained in the closure of some region V (q′, S′) =
VR(q′, S′), which proves A3. Hence, J is admissible for AVDs. !

In Definition 2, p. 163 [24], Voronoi vertices and Voronoi edges were defined in the same way
as for our Voronoi diagram, namely as (maximal) sets contained in the closures of two (resp.: of
at least three) regular Voronoi regions.12 By Lemma 17, regular Voronoi regions are the same
as ours. Thus, the two definitions yield identical graphs as Voronoi diagrams.

The only difference lies in the fact that in RIC-AVDs, Voronoi edges are, as point sets, dis-
tributed among the Voronoi regions. For example, Figure 10 (i) shows a curve system admissible
for each set of axioms considered in this paper. In (iii) the extended Voronoi region EVR(p, S)
of p consists of the closure of its interior, V (p, S), plus segment σ of the adjacent Voronoi edge.
In fact, we have

σ ⊆ J(p, q) ∩ J(p, r) ⊂ R(p, q) ∩ R(p, r) = EVR(p, S)

because of p ≺ q, r. The rest, τ , of this edge belongs to the extended region of q since q ≺ r.
Point v is a Voronoi vertex of the RIC-AVD but the point w, where σ and τ meet, is not, because
it lies in the closure of only two regular Voronoi regions.
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Figure 10: (i) A curve system for S := {p, q, r} that is admissible under all definitions.
(ii) Voronoi regions in the DC model, assuming p ≺ q ≺ r. Segment σ is contained in the
region of p. (iii) The regular regions in the RIC model equal the Voronoi regions in our new
model.

The RIC algorithm from [24] iteratively adds a random index s to the set R already consid-
ered, and updates both the Voronoi diagram V (R) and a history graph, H(R). This incremental
step depends only on the structure of the intersection

V (s,R ∪ {s}) ∩ V (R);
12For the definition of Voronoi edges and vertices in our model, compare the end of the proof of our Theorem 10.
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see the analysis starting on p. 165 [24]. This set, in turn, does not depend on the order ≺
on S. Therefore, we can run the incremental algorithm on a system of curves, admissible
according to our Definition 1, without supplying an order ≺, and the Voronoi diagram V (S)
will be constructed. No harm can come from the fact that the finite intersection property R2

is missing, for the following reasons. All geometric operations, in particular those on bisecting
curves, are capsuled in a basic module, as was explained in the introduction to this section.
With RIC-AVDs, this module takes as input a subset S′ of five indices of S, and outputs a
combinatorial description of V (S′); see p. 169 [24]. The incremental algorithm itself works in
a purely combinatorial way on the outputs of this module. Its correctness does depend on the
fact that V (S) is a finite plane graph and on the piece of pie fact, but these are guaranteed by
our Theorem 10 and by Lemma 11.

We have thus obtained the following counterpart of Theorem 2, p. 181 [24].

Theorem 18 Let J be a curve system admissible in the sense of Definition 1 for index set S,
where |S| = n. Then the abstract Voronoi diagram V (S) can be constructed in an expected
number of O(n log n) steps and in expected O(n) space, by randomized incremental construction.
A single step may involve a call to a basic module that returns a combinatorial description of a
diagram of size five.

Lemma 17 shows that curve systems admissible for RIC-AVDs form a subclass of curve
systems admissible for new AVDs. This inclusion is strict, for two reasons. Obviously, bisecting
curves are now allowed to intersect infinitely often. Also, abandoning the total order on S makes
more curve systems admissible, as the following lemma shows.

Lemma 19 There are admissible curve systems enjoying the finite intersection property, which
are not admissible for RIC-AVDs under any order on index set S.

Proof. Figure 11 shows a curve system admissible under Definition 1, with Voronoi edges drawn
bold. For each permutation ijk of 123 there exists a point zijk ∈ J(pi, pj)∩J(pj, pk)∩D(pk, pi).
Under order pi ≺ pj ≺ pk we would have zijk ∈ R(pi, pj) ∩ R(pj , pk) ∩ R(pk, pi). This prevents
zijk from being contained in any extended Voronoi region, thus violating condition R4. !

p1
p2

p2
p3

p1

p3

p3

p2

p1
p2

z312

z321

z231

z213

z123
z132

VR(p2, S)

VR(p3, S)

VR(p1, S)

Figure 11: An admissible curve system that cannot be made admissible for RIC- or DC-AVDs
by any order on S.

Summarizing, we have seen that under the new AVD axioms the incremental algorithm
becomes both more natural and more powerful.
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5.2 Divide & Conquer

The divide & conquer algorithm of [21] was designed for the original definition of abstract
Voronoi diagrams that will now be reviewed. As in Subsection 5.1, the input curves J(p, q) and
the order ≺ on S were used to define Voronoi regions

R(p, S) = EVR(p, S)

that are equal to the extended Voronoi regions for RIC-AVDs. Again, the Voronoi diagram
V (S) was defined as the union of all region boundaries. The important difference is that for
DC-AVDs the interiors of the Voronoi regions were not required to be path-connected. More
precisely, only the following properties were stated.

Definition 20 The pair (J,≺), where J := {J(p, q); p "= q ∈ S}, is called admissible for DC-
AVDs if the following axioms are fulfilled.

D1) Each curve J(p, q), where p, q ∈ S, is mapped to a closed Jordan curve through the north
pole by stereographic projection to the sphere.

D2) For any p, q, r, s in S, the intersection J(p, q) ∩ J(r, s) consists of at most finitely many
connected components.

D3) For each subset S′ ⊆ S and for each p′ ∈ S′, the set R(p′, S′) is path-connected and has a
non-empty interior.

D4) For each subset S′ ⊆ S, we have

R2 =
⋃

p′∈S′

R(p′, S′).

Due to D4, each point of the plane belonged to a Voronoi region. Since only the Voronoi
regions, but not necessarily their interiors, need be path-connected, Voronoi regions could contain
cut-points. A simple example is shown in Figure 12. Because of p ≺ q, r, we have J(p, q) ⊂
R(p, q) and J(p, r) ⊂ R(p, r), so that segment σ ⊂ J(p, q)∩J(p, r) belongs to R(p, q)∩R(p, r) =
R(p, S) where S = {p, q, r}. All points of segment σ are cut-points of the Voronoi region R(p, S),
whose removal disconnects this region.

In preparation for a precise definition of Voronoi edges, a segment σ of J(p, q) was called
a {p, q}-borderline if p ≺ q and σ ⊂ R(p, S) ∩ R(q, S), or vice versa; compare Definition 2.3.4,
p. 40 [21]. In Figure 12, σ is both, a {p, q} and a {p, r} borderline. In a way, the boundary of
R(p, S) has been squeezed together along σ. But the DC-AVD algorithm, that will be sketched
below, operated as if the two borderlines forming σ were disjoint.

More complicated situations could arise at such points where more than two Voronoi regions
met. Let us take a look at the pieces of pie around the point v depicted in Figure 13. Since
Voronoi regions are connected, by D3, and because their closures are simply-connected (see
Lemma 12 and the discussion preceding it), only the Voronoi region to which point v belongs
could contribute several pieces of pie to the neighborhood of v. These pieces were connected
via v. In Figure 13, for example, point v belongs to R(p, S) and connects the three pieces of
this Voronoi region.

At point v, the Voronoi region of p was conceptually thickened, thus splitting v into as
many “induced” points vi as there are pieces of R(p, S); compare Definition 2.5.1, p. 46 [21]. In
Figure 13 this thickening results in three induced points, v1, v2, v3. Of the borderlines adjacent
to v, each vi inherits those contained in the wedge between two consecutive p-pieces. Each
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Figure 12: A curve system that satisfies the DC-AVD axioms, provided that order ≺ assigns
both J(p, q) and J(p, r) to p, that is, p ≺ q, r. The region R(p, S) of p consists of the two shaded
regions plus the segment σ connecting them.
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Figure 13: A pie neighborhood in a DC-AVD. Encircled indices denote Voronoi regions. Point
v belongs to the region of p ≺ a, b, c, d, e, f . It induces three points, v1, v2, v3. Of those, v1 and
v2 are Voronoi vertices of degree 4 resp. 3.

induced point adjacent to ≥ 3 borderlines was called a Voronoi vertex, and each borderline
connecting two induced vertices was called a Voronoi edge. This definition determines the graph
structure of DC-AVD. It differs from the way RIC-AVDs and new AVDs are defined as graphs.
For example, in Figure 10 (ii) point w is adjacent to the borderlines of {p, q}, {p, r}, {q, r} and,
therefore, a Voronoi vertex. Point v is not a Voronoi vertex because it induces two points of
degree only 2.

Now we briefly review the divide & conquer algorithm of [21] for DC-AVDs. The set S
was divided into two subsets, L and R, of about the same size. Once their diagrams had been
recursively computed they must be merged into V (S). The merge step involved computing all
{p, q}-borderlines of V (S) where p ∈ L and q ∈ R. These borderlines can form unbounded chains
or cycles. Of each chain, a starting segment could be picked up at infinity by the technique of
Chew and Drysdale [10]. For cycles, no such approach was known to work with AVDs. Therefore,
it was required, in addition to properties D1 to D4, that L and R form an acyclic partition, that
is, that for all subsets L′ ⊆ L,R′ ⊆ R, the borderlines separating L′-regions from R′-regions do
not contain cycles.

Bisecting chains were traced through V (L) and V (R) simultaneously. Three phenomena
needed special attention that cannot occur in the classical divide & conquer algorithm for Eu-
clidean Voronoi diagrams [32].

First, the same point v of V (S) could be incident to several L/R-separating borderlines. It
was necessary to assign these borderlines to the vertices vi induced by v in such a way that, in the
graph V (S), bisecting chains pass consistently through induced vertices. To this end, a function
site-of was employed to determine if the Voronoi region containing v in V (S) belongs to L or to
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R. In the first case, any bisecting chain visiting v would be continued by the counterclockwise
first L/R-borderline adjacent to v, while in the second case the clockwise first borderline around
v was chosen; see pp. 93 and 112 in [21].

The second phenomenon concerned the tracing of a bisecting chain. Let e ⊂ J(p, q) be an
edge of chain K we are currently tracing through Voronoi region R(p, L), where p ∈ L is to the
left of J(p, q), as seen in tracing direction, and q ∈ R. Let vL and vR denote the points where
the part of J(p, q) extending e hits the boundaries of R(p, L) and R(q,R), respectively. If vR lies
before vL on J(p, q), edge e ends in vR, and chain K is continued by an edge e′ ⊂ J(p, q′), for some
q′ ∈ R.13 Now we need to determine the point v′L where J(p, q′) hits the boundary of R(p, L). In
the Euclidean case, v′L can be efficiently located by scanning ∂R(p, L) counterclockwise, starting
from vL. With AVDs this approach does not work, because J(p, q′) can cross J(p, q) before
reaching ∂R(p, L); see Figure 3.19 on p. 84 [21].

This problem was solved in the following way. One maintains the last bisecting edge extension
T = J(p, qs) whose endpoint on ∂R(p, L) has actually been determined by counterclockwise scan.
Now, in order to find the endpoint of e′ ⊂ J(p, q′), one first tests if J(p, q′) crosses T . If so,
edge e′ ends there, and chain K is continued by a piece of T . Otherwise, we scan ∂R(p, L)
counterclockwise from vL, as usual, find v′L, and update T . This procedure was built into
function L-endpoint on p. 85 of [21].

The third phenomenon was that an edge e ⊂ J(p, q) does not necessarily end at the first
point v of intersection of J(p, q) with some other curve J(p, p′). In fact, if the two curves only
touch at v then e may well continue beyond v. It does end when it comes to a cross-point where
the status of J(p, q) as a {p, q}-borderline ends; see p. 109 in [21].

As with RIC-AVDs, the time spent on constructing a DC-AVD was measured by the number
of standard RAM operations plus the number of calls to some basic module, that contained the
following elementary operations on bisecting curves.

E1) Given a curve J(p, q) and a point v, determine if v ∈ D(p, q) holds.

E2) Given a point v ∈ J(p, q) ∩ J(r, s) ∩ J(t, u) and orientations of the curves, determine if
J(r, s)+ is prior to J(t, u)+ in clockwise direction from J(p, q)+, in a neifgborhood of v.
Here, J+ denotes the curve segment outgoing from v.

E3) Given points v ∈ J(p, q), w ∈ J(p, r) and orientations, determine the first cross-point on
J(p, r) after w caused by intersection with the part of J(p, q) after v.

E4) Given a bisecting curve J with orientation, and points v,w, x ∈ J , determine if they appear
in the order (v,w, x) on J .

Under these assumptions, the merge step could be completed in O(n) many steps, where
n = |S|; see Theorem 3.4.3.2 in [21].

Now we set out to prove the counterpart of this result for new AVDs.
Elementary operations E1 and E4 can remain unchanged. Operation E2 can also be re-used

if the predicate “prior to” is implemented correctly. It must include the situation where one
curve touches the other in every neighborhood of v from the same side. In Figure 5, for example,
F− is prior to G−, which is prior to F+, which in turn is prior to G+, in clockwise direction14.

13For simplicity we assume that vR is an interior point of the region R(p,L), an interior edge point of V (R),
and not a multiple boundary point of V (R).

14Observe that when we scan a vertex for an edge that continues an incoming bisecting chain, we need to
evaluate the “prior to” predicate for only such pairs of bisecting curves that share one index. Lemma 6 rules out
that one of them alternates infinitely often between the open halfplanes defined by the other.
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Only operation E3 must be modified. Instead of searching for a cross-point in the sense of
DC-AVDs, we now determine the first Voronoi vertex. The modified operation is as follows.

E′
3) Given points v ∈ J(p, q), w ∈ J(p, r) and orientations, determine the first Voronoi vertex

of V ({p, q, r}) that is situated on J(p, q) after v, and on J(p, r) after w, or return that no
such vertex exists.

Now we show how to adapt the divide & conquer algorithm for DC-AVDs from [21] to the
new AVD concept.

Theorem 21 Let J be an admissible curve system for index set S of size n, and assume that
S = L∪R is an acyclic partition. Then the Voronoi diagrams of V (L) and V (R) can be merged
into V (S) in O(n) many steps and O(n) space. A step may involve a standard RAM-Operation
or one of the elementary bisector operations E1, E2, E′

3, E4 stated above.

Proof. It is crucial for the merge step that V (L), V (R), and V (S) are finite plane graphs. For
DC-AVDs, this fact was a consequence of the finite intersection property D2, and of a “piece
of pie” lemma for arbitrary bisecting curves passing through a common point. For new AVDs,
Theorem 10 ensures finiteness, and Lemma 11 establishes a piece of pie fact for the Voronoi
edges emanating from a Voronoi vertex.

These facts allow us to run the DC-AVD merge algorithm, with the following two modifi-
cations. First, the algorithm can be greatly simplified. Multiple induced points, as depicted
in Figure 13, can no longer occur, because each Voronoi region appears only once in any pie
neighborhood of v, by Lemma 11. As a consequence, there is no need for different scan directions
in computing bisecting chains. When edge e of chain K ends at vertex v, we simultaneaously
scan the regions of V (L) and V (R) in clockwise direction around v for the first Voronoi edge e′

that separates two regions from L and R, respectively. Then K is extended by e′.
The second modification is effected by replacing E3 with E′

3. Its effect can be observed in
Figure 10 (ii). Point w would be the cross-point where the borderline between the regions of p
and q ends, but point v depicted in (iii) is the correct Voronoi vertex we need to compute in the
new AVD model. This modification applies whenever two bisecting curves J(p, q) and J(p, r)
are tested for “proper” intersection. !

The following consequence of Theorem 21 is immediate.

Theorem 22 The abstract Voronoi diagram V (S) can be constructed in O(n log n) many steps
and in O(n) space, if acyclic partitions can be found recursively in linear time. A single step may
involve a call to a basic module that contains four elementary operations on bisecting curves.

For convex distance functions, for example, standard split lines are guaranteed to give acyclic
partitions. Further examples of acyclic partitions were provided in Chapter 4 [21].

Admissible curve systems under Definition 1 are not allowed to yield Voronoi regions whose
interior is disconnected. Therefore, a curve system admissible for DC-AVDs need not be admis-
sible for new AVDs. On the other hand, the curve system depicted in Figure 11 is admissible for
new AVDs, but cannot be made admissible for DC-AVDs by any order; the same proof as for
Lemma 19 applies. Thus, the divide & conquer algorithm for new AVDs becomes considerably
simpler, while its scope has been shifted.

6 Conclusions

We have shown that the finite intersection property of bisecting curves is not necessary for
defining and computing abstract Voronoi diagrams. With the simplified set of axioms suggested
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in this paper, the AVD concept has become more versatile as before. We expect that these
axioms will also be helpful in further generalizing the AVD concept. Interesting open questions
are how to deal with closed bisecting curves and with disconnected Voronoi regions. Also, further
progress towards a general theory of 3-dimensional AVDs would be very valuable.
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