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Abstract

Searching for a point in the plane is a well-known search
game problem introduced in the early eighties. The best
known search strategy is given by a spiral and achieves
a competitive ratio of 17.289 . . . It was shown by Gal [14]
that this strategy is the best strategy among all mono-
tone and periodic strategies. Since then it was unknown
whether the given strategy is optimal in general. This
paper settles this old open fundamental search problem
and shows that spiral search is indeed optimal. The
given problem can be considered as the continuous ver-
sion of the well-known m-ray search problem and also
appears in several non-geometric applications and mod-
ifications. Therefore the optimality of spiral search is
an important question considered by many researchers
in the last decades. We answer the logarithmic spiral
conjecture for the given problem. The lower bound con-
struction might be helpful for similar settings, it also
simplifies existing proofs on classical m-ray search.

Keywords: Search games, computational geometry,
motion planning, spiral search, m-ray search, competi-
tive analysis, lower bound

1 Introduction

Search games (i. e., games where two players, a searcher
and a hider, compete with each other) are studied in
many variations in the last 60 years since the first
work by Koopman in 1946. For example, Bellman [5]
introduced the search for an immobile hider located
on the real line with a known probability distribution,
Gal [14] and independently Baeza-Yates et al. [2] solve
this problem for a uniformly distributed location of the
hider. The book by Gal [14] and the reissue by Alpern
and Gal [1] gives a comprehensive overview on results
on search games.

The length of the searcher’s trajectory is often used
as payoff of a search game. To get a finite value for
the game, we use the competitive framework, that is,
we compare the length of the searcher’s trajectory to
the shortest distance to the hider. Gal [14] calls this
a normalized cost function. More precisely, we call a
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search strategy competitive with a factor C, if |Π| ≤
C · |Πopt| holds for every location of the hider, where |Π|
denotes the length of the searcher’s path and |Πopt| the
shortest path to the hider. For analysing the efficiency
of a search startegy we use the competitive framework
which was introduced by Sleator and Tarjan [28], and
used in many settings since then, see for example the
survey by Fiat and Woeginger [10] or, for the field of
online robot motion planning, see the surveys [24, 17].

We consider a well-known search game problem
introduced by Gal [14], namely searching for a point in
the plane. Starting from a fixed origin O we move along
a path Π through the plane. Let us assume that there
is an unknown target point t and let pt denote the first
point on Π so that t lies on the line segment between
O and pt. We detect t at point pt. This means, that
we sweep the plane until finally the unknown target t is
found, see Figure 1.
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Figure 1: Searching for a point in the plane.

The efficiency of the search path Π is given by the

worst-case target, C := supt

|Π
pt
O
|

|Ot| , the constant C is

called the competitive ratio of Π. It was shown by Gal
[14] that a spiral strategy is the best strategy among
all monotone and periodic strategies. A strategy S
represented by its radius vector X(θ) is called periodic
and monotone, if θ is always increasing and X also
satisfies X(θ + 2π) ≥ X(θ). Gal states that it might
be a complicated task to show that there is a periodic
and monotone optimal strategy, a lower bound remains
open.

The given problem can be considered as the contin-
uous version of the well-known m-ray search problem
which in turn appears in several modifications, see for
example [3, 4, 19, 16, 20, 22]. The problem was first in-
troduced and solved by Gal [13]. Namely Schuierer and
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López-Ortiz intensively studied and solved many vari-
ants of discrete m-ray search problem, see [16, 21, 25,
26, 22, 27, 23]. The paradigm of doubling has also many
applications in non-geometric areas, see the overview of
Chrobak and Kenyon-Mathieu [7]. Additionally, there
are continuous versions of the problem where an opti-
mal solution is given, if the logarithmic spiral conjecture
can be proven, see [14, 2, 11, 12, 9]. For example Finch
and Zhu considered the problem of searching for a line
in the plane, the relevant conjecture that the family of
logarithmic spirals contains the minimal path remains
open, see [12].

Altogether, optimality of spiral search is an im-
portant questions considered by many researchers in
the last decades and lower bounds are very difficult to
achieve.

The paper is organized as follows. In Section 2
we present the best spiral strategy given in [1] and in
Section 3 we show that this strategy is indeed optimal
in general. The lower bound construction makes use of
some transformations from the continuous problem to a
discrete version. A given strategy is applied to a special
2-ray version of the problem and the best performance
for this problem gives a lower bound on the original
problem.

Another breakthrough is that for the 2-ray version
we can make use of a visiting order of rays induced
by the smallest-current-depth rule. This idea simplifies
also many other proofs in the m-ray search setting.
Note that an analogous rule was proven to be optimal
by López-Ortiz and Schuierer in the presence of a
parallel search by p agents, see [23]. Apparently, by
the same idea one can easily show that there is an
optimal strategy in the classical m-ray setting that
is periodic and monotone. Therefore the given lower
bound construction gives some more insight in the
structure of such problems and it can be applied for
variants of the problem.

In the following, we will assume that the target
point is at least one step away from the start. Oth-
erwise, we use an additive constant A which means
|Π| ≤ C · |Πopt| + A, see [28]. These two settings are
equivalent.

2 Spiral search

We consider a logarithmic spiral, Π, which is given in
polar coordinates by (ϕ, eϕ cot(α)) for −∞ < ϕ < ∞,
see Figure 2 for an example with α ≤ π/2. The angle
α ≤ π/2 expresses the excentricity of the spiral. The
length of the spiral from the center O to some point q
is given by 1

cos α
|Oq|, for details see [6]. We denote this

path by Πq
O and its length by |Πq

O |.
The spiral expands successively and for every target

O

α

t q

pt

Tq

Figure 2: A logarithmic spiral and the worst-case
situation.

point t there will be a first point pt on the spiral so
that the segment ptO will hit the target t for the first
time. Obviously, the worst case for the competitive
ratio is given, if we miss the target t arbitrary close to
(ϕ, eϕ cot α) and detect t at pt = (ϕ + 2π, e(ϕ+2π) cot α),
see Figure 2. Altogether, the worst-case ratio for the
spiral is given by

|Πpt

O |

|Ot|
=

1

cosα
e2π cot α .

Therefore for b := cotα we have to find

minb eb 2π
√

1 + 1
b2

which gives 17.289 . . ., the min-

imum is achieved for b = 0.15540 . . . This strategy is
the best strategy among all periodic and monotone
strategies, see Alpern and Gal [1].

Theorem 2.1. The optimal spiral for searching a point
in the plane achieves a competitive ratio of 17.289 . . .

3 Lower bound construction

Let us first consider a discrete version of the problem
using a bundle of m rays that emanate from the origin
and which are separated by an angle α = 2π

m
, see

Figure 3. The target will be on one of the rays. Again,
the goal is detected, if it is swept by the radius vector
of the trajectory, i.e., t is hit by a segment ptO and pt

is visited on the corresponding ray.
Note that any strategy for the continuous version

of the problem gives always a strategy for the discrete
version. Therefore any lower bound for the discrete
version will give a lower bound for the continuous
version. Up to now we can neither assume that we have
to visit the rays in a periodic order nor that the depth
of the visits increases in every step.

We represent an infinite search strategy, S, as
follows: In the ith step, the searcher hits a ray—
say ray l—at distance xi from the origin, moves a
distance βixi − xi along the ray l, and leaves the ray
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Figure 3: A bundle of rays, a reasonable strategy and a
shortcut.

at distance βixi with βi ≥ 1. Then, within length
√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1 (by the law of

cosine) it moves to the next ray at distance xi+1, see
Figure 3. Note that any search strategy for our problem
can be described in this way. Let us assume that the ray
l was visited up to distance βkxk and is visited the next
time at index Jk with distance xJk

and the strategy
plans to examine points beyond βkxk . A goal below
βkxk was detected earlier. We can assume xJk

≥ βkxk

by the following argument. For xJk
< βkxk the strategy

has to slip along ray l in order to detect points beyond
βkxk. By the triangle inequality a direct movement to
βkxk is more efficient.

The worst case occurs if the searcher slightly misses
the goal while visiting ray l up to distance βkxk .
Instead, it finds the goal at step Jk and distance xJk

on ray l and the goal is arbitrarily close to βkxk .
Altogether, the competitive ratio, C(S), is given by

sup
k

Jk−1
∑

i=1

βixi−xi+
√

(βixi)2−2βixixi+1 cos γi,i+1+x2
i+1

βkxk

(3.1)

Note that the goal is at least one step away from
the start. Therefore we set β0x0 = β−1x−1 = . . . =
β−m+1x−m+1 = 1 for initializing the first visits on the
rays.

We simplify the problem for m rays in some steps.
We do not change the movement of the strategy but we
will improve the ratio (3.1) for every k. Instead of the
distance

√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1+βi+1xi+1−xi+1

from βixi to xi+1 and then to βi+1xi+1 between two
arbitrary successive rays we let this distance shrink to

√

(βixi)2 − 2βixiβi+1xi+1 cos 2π
m

+ (βi+1xi+1)2. This

would be the distance by the law of cosine between two
neighboring rays without slipping along the second ray,
see the dashed line in Figure 3.

The new distance is obviously not
greater than the original one, because
γi,i+1 ≥ 2π

m
holds and by triangle inequality

√

(βixi)2 − 2βiβi+1xixi+1 cos γi,i+1 + (βi+1xi+1)2 is

not greater than
√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1+

βi+1xi+1 − xi+1. Of course it might be the same for
βi+1 = 1 and two neighboring rays, which means
γi,i+1 = 2π

m
. We change only the path length for

the ratio but we do not change the movements of
the given strategy. Therefore the ratio (3.1) cannot
increase, because the numerator will not increase. We
additionally set β1x1 = x1 for the starting point which
will also not increase the numerator.

There is only one problem in the above reformula-
tion concerning the last value of the sum in the numer-
ator of ratio (3.1). The last step of the strategy (before
detecting the goal at βkxk) goes from βJk−1xJk−1 to xJk

and not directly to βJk
xJk

and this step might indeed be
smaller than the distance from βJk−1xJk−1 to βJk

xJk
.

Therefore we simply omit this last step which will de-
crease the ratio again a bit. One can imagine that this
last step will have no influence if we let m go to infinity
at the end. Again, we do not change the movement of
the strategy, we only improve the ratio.

For convenience, from now on we denote the values
βixi of S by yi. We still assume that the goal is one step
away from the start. Keep in mind that the goal can be
detected closely behind yk only when the corresponding
ray is visited at distance yJk

again and not earlier! Only
the computation of the ratio is different. Altogether, we
would like to minimize

sup
k

Jk−2
∑

i=1

√

y2
i − 2yiyi+1 cos 2π

m
+ y2

i+1

yk

(3.2)

which gives a lower bound on (3.1) and on the contin-
uous problem as well. Note that (3.2) still stems from
the m-ray version of the problem.

Again, we set y−m+1 = y−m+2 = . . . = y0 = 1 for
initializing the first visits on the virtual rays, y−m+1

stands for the first ray, y−m+2 for the second ray and so
on. In (3.2), the index k is in the range from −m+1 to
infinity whereas Jk begins at index 3. In the following,
for notational convenience we let S start at index 1. For
short, step j with distance yj is also denoted as step yj .
Altogether, the following Lemma holds.
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Lemma 3.1. Let S be a strategy for the discrete m-
ray version of the problem. The ratio of (3.2) is never
greater than the ratio of (3.1). Minimizing (3.2) gives
a lower bound on the discrete m-ray and the continuous
version of the problem.

The simplification above results in the following
much more simple interpretation of the problem that
reflects (3.2). Figure 4 shows an example for m = 5
and with up to 11 steps yi := βixi in the original m-ray
version. For (3.2) we can assume that there are only two
rays with angle 2π

m
between them and the agent moves

successively from one to the other, see Figure 5(i). For
every visit the agent only imaginarily decides which ray,
l, of the original m rays it would have visit in the m-
ray setting, the important indices Jk still determine the
ratio. Remember that the ray visited with depth yk

is imaginarily visited the next time at index Jk. For
initialization, the index J−m+1 represents the first visit
on ray 1, the index J−m+2 the first visit on ray 2 and
so on. For example, in Figure 5(i) J−4 = 1 and J1 = 7
means that the first of the m = 5 rays was visited at y1

and the next time at y7 as induced by Figure 4.
In the following the simple interpretation will be

denoted as the 2π
m

-ray version. Any strategy for the
2π
m

-ray version is uniquely determined by m, by the
sequence S = (y1, y2, . . .) and the visiting order JS =
(J−m+1, J−m+2, . . .). Every pair (S, JS) determines the
ratio (3.2). The following lemma holds.

Lemma 3.2. Any strategy for the discrete m-ray ver-
sion of the problem induces a sequence S = (y1, y2, . . .)
and a visiting order JS = (J−m+1, J−m+2, . . .), the cor-
responding ratio (3.2) for the 2π

m
-ray version of the prob-

lem is never greater than the ratio of (3.1). Minimizing
(3.2) gives a lower bound on the discrete m-ray and the
continuous version of the problem.

From now on we consider 2π
m

-ray version of the
problem. Let us assume that an optimal sequence
S = (y1, y2, . . .) together with a visiting order JS =
(J−m+1, J−m+2, . . .) that minimizes (3.2) in the 2π

m
-

ray version is given. Before step yi with i ≥ 1
starts, the m rays have been virtually visited up to a
certain depth. The target is at least one step away
from the origin, so the starting depth on every ray is
1. So before step yi is applied there is a m-vector
Di−1 := [yi−11

, yi−12
, . . . , yi−1m

] that represents the
current depth on the rays in increasing order which
means yi−1j

≤ yi−1j+1
for j = 1, . . . , m − 1. For

initialization we have D0 = [1, 1, . . . , 1, 1]. The first
step y1 > 1 yields D1 = [1, 1, . . . , 1, y1]. For short
let Di−1[j] := yi−1j

, the j-th smallest depth among m
depth entries.

For an optimal sequence S in the 2π
m

-ray version we
can choose a visiting order (more precisely, we improve
the subscript k in the indices Jk) in such a way that at
every step yi the ray with the smallest current depth in
Di−1 is visited next, which means, that we obtain Di by
deleting Di−1[1] from and inserting yi into Di−1. Note
that yi is not necessarily inserted into the first place of
Di and Di−1[2] might become Di[1]. If two rays have
exactly the same smallest current depth, we visit the
ray which was visited earlier.

Intuitively, the above rule will keep the ratio (3.2)
as small as possible regardless how the original visiting
order was. The numerator of (3.2) is the same for all
i = Jk but we can choose k or yk, respectively. If we
do not choose the minimal yk at step yi, it has to be
choosen later at j = Jk > i, the numerator increases.
The above rule will be denoted as the smallest-current-
depth visiting order. We will prove that the smallest-
current-depth visiting order chooses the current smallest
depth immediately and also maximize it for the future,
this is optimal.

For example, in Figure 5(i) an optimal visiting order
for the first five steps y1, . . . , y5 should visit the five
imaginary rays successively since the starting depth on
every ray was 1, this gives J−4 = 1, J−3 = 2, J−2 = 3,
J−1 = 4 and J0 = 5. For step y6 we set J4 = 6 since
y4 is the smallest current depth on all rays now. This
means that y6 visits the same ray as y4. Further on we
obtain J2 = 7 since y2 is the smallest current depth at
step y7, then we have J6 = 8, J1 = 9, J5 = 10, J9 = 11
and so on. This is the best visiting order for S.

Lemma 3.3. Let S = (y1, y2, . . .) be the sequence of a
strategy for the 2π

m
-ray version of the problem. The

smallest-current-depth visiting order minimizes (3.2)
among all visiting orders.

Proof. We did not change the movement of the strategy
S. Thus the numerator of ratio (3.2) is the same at step
yi with index i = Jk (the sum runs up to index i− 1),
but we can choose k, that is the denominator yk among
the current depth vector Di−1. At every step yi the
smallest depth in Di−1, Di−1[1], is responsible for the
greatest ratio of some future steps.

We show that the smallest-current-depth rule max-
imizes Di−1[1] for all i ≥ 1 among all existing visiting
orders Di−1. Thus the smallest-current-depth visiting
order chooses the current smallest depth immediately
and also maximize it for the future, this is optimal.

We show even a bit more. Let Di−1 denote the
depth vector for another visiting rule with the same
sequence S. By induction, we prove that Di−1[j] ≥
Di−1[j] for j = 1, . . . , m for all i ≥ 1.

For i = 1 this is obviously true, the depth vector is
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Induced visiting order: J−4 = 1, J−3 = 2, J−2 = 3, J−1 = 5, J0 = 4, J1 = 7, J2 = 8, J3 = 10, J4 = 6, J5 = 9, J6 = 11, . . .

y10

y11

y7

y1

y2

y9

y5

y3

y6

Figure 4: The original visits (with yi := βixi) of a strategy for m = 5 rays gives the induced visiting order
J−4 = 1, J−3 = 2, J−2 = 3, J−1 = 5, J0 = 4, J1 = 7, J2 = 8, J3 = 10, J4 = 6, J5 = 9, J6 = 11, . . . for the 2π

m
-ray

version of the problem in Figure 5.

initialized by D0 = [1, . . . , 1] for every visting order.
Let us assume that the smallest-current-depth rule
maximizes Di−1[j] up to index i ≥ 1 for j = 1, . . . , m
among all existing visiting orders. Let Di−1 denote the
ordered depth vector of another visiting order for the
same sequence S. The next entry for Di−1 and Di−1 in
S is yi and both orders can replace exactly one entry
in Di−1 and Di−1, respectively. By assumption the
smallest-current-depth rule has maximized all entries
Di−1[j], that is Di−1[j] ≥ Di−1[j] for j = 1, . . . , m.

We consider two cases for yi. In the first case
yi is not greater than any element in Di−1. Thus
it is needless to update Di−1, we skip this step and
can further improve the ratio for the smallest-current-
depth rule. We have Di−1[j] ≥ yi for j = 1, . . . m and

Di−1 = Di. If it is needless to insert yi into Di also,
we have Di−1 = Di and the statement holds for index
i. On the other hand, let us assume that we can replace
one entry in Di−1 by yi. We assume that Di[l] = yi

and that Di−1[k] was removed. Obviously we have,
k ≤ l because of the order in Di and Di−1. This means
Di[j] = Di−1[j] for j = l + 1, . . .m and Di[j] ≤ yi

for j = 1, . . . l. Altogether, we have Di[j] ≥ Di[j] for
j = 1, . . . , m. The statement holds for index i also.

In the second case let yi be greater than at least
one element in Di−1, we delete Di−1[1] and insert yi

for getting Di. Assuming that Di[n] = yi, we have
Di[j] = Di−1[j + 1] for j = 1, . . . , n − 1 and Di[j] =
Di−1[j] for j = n+1, . . . , m. Since yi is greater than one
element in Di−1 and Di−1[j] ≥ Di−1[j] for j = 1, . . . , m,
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(i) (ii)

Optimal visiting order: J−4 = 1, J−3 = 2, J−2 = 3, J−1 = 4, J0 = 5, J4 = 6, J2 = 7, J6 = 8, J1 = 9, J5 = 10, J9 = 11, . . .
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y6
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y8
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y7

y9

y9

y10

y10

y11

y11

y2

y4

y4

y2

y0 = 1

y0 = 1

y1

y5

y1

y5

y3

y3

y6

y6

y8

y8

y7

y7

y9

y9

y10

y10

y11

y11

y2

y4

y4

y2

y0 = 1

y0 = 1

y1

y5

y1

y5

y′1 = y4, y
′

2 = y2, y
′

3 = y6, y
′

4 = y1, y
′

5 = y5, y
′

6 = y9,

y′7 = y7, y
′

8 = y11, y
′

9 = y3, y
′

10 = y8, y
′

11 = y10, . . .

Optimal visiting order: J ′i = i + m

Induced visiting order: J−4 = 1, J−3 = 2, J−2 = 3, J−1 = 5, J0 = 4, J1 = 7, J2 = 8, J3 = 10, J4 = 6, J5 = 9, J6 = 11, . . .

Figure 5: (i) For ratio (3.2) we interpret the situation by successive visits on two rays of angle 2π
m

and with
imaginary visits. The visiting order of the corresponding m = 5 rays is induced by Figure 4. The optimal
smallest-current-depth visiting order for S is given by J−4 = 1, J−3 = 2, J−2 = 3, J−1 = 4, J0 = 5, J4 = 6, J2 =
7, J6 = 8, J1 = 9, J5 = 10, J9 = 11, . . . (ii) Reordering of S into S ′ and application of the smallest-current-depth
visiting order for S′ gives J ′i = i + m. The strategy S ′ is periodic and monotone, can also be applied to Figure 4
and is never worse than S wrt.(3.2).

the entry yi replaces one entry in Di−1 also. Let us
assume Di[l] = yi and that Di−1[k] was removed. As
above we have k ≤ l. From the properties above we
conclude n ≤ l, otherwise Di−1[l + 1] > Di−1[l + 1], a
contradiction to the induction hypothesis.

We conclude Di[j] ≥ Di[j] for j = l + 1, . . . , m,
these values did not change from Di−1 to Di and from
Di−1 to Di. From yi = Di[n] = Di[l] and n ≤ l we
conclude, Di[j] ≥ Di[j] for j = n, . . . , l. Finally, we
have Di[j] = Di−1[j + 1] for j = 1, . . . n − 1. In Di

the k-th element was removed with k ≤ l. Therefore
we have Di[j] = Di−1[j] for j = 1, . . . , k − 1 and
Di[j] = Di−1[j + 1] for j = k, . . . l − 1. For k ≥ n and
for k < n we have Di[j] ≥ Di[j] for j = 1, . . . , n− 1.

Altogether, the statement holds for index i also and
in general by induction. The smallest-current-depth
visiting order maximizes Di[1], minimizes (3.2) and is

optimal among all visiting orders for a given sequence S.

There is also another obvious and simple improve-
ment of a sequence S under the smallest-current-depth
visiting order. If yi does not exceed any entry in Di−1

we simply skip this step and further improve (3.2). Note
that Lemma 3.3 is a powerful instrument, it also holds
for classical m-ray search and some variants, for exam-
ple on bounded distances.

Let us now assume that the smallest-current-depth
visiting order has been applied to S and the depth vector
Di−1 is updated at every step yi as mentioned above.
We can now easily prove that the m greatest values of
Sm+i := (y1, y2, . . . , ym+i) determine the current depth
vector Dm+i.
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Lemma 3.4. Let S = (y1, y2, . . .) be a sequence and let
JS = (J−m+1, J−m+2, . . .) be the smallest-current-depth
visiting order of a strategy for the 2π

m
-ray version. The

m greatest values in Sm+i = (y1, y2, . . . , ym+i) deter-
mine the current depth vector Dm+i. From Dm+i−1 to
Dm+i the i-th greatest value of Sm+i−1, Dm+i−1[1], is
deleted and the value ym+i is inserted.

Proof. The statement holds for i = 0 and Sm, the first
m values are distributed among m rays, an entry 1 is
deleted and the value ym > 1 is inserted. Let us assume
that the statement holds for Sm+i−1. That is Dm+i−1

contains the m greatest values of (y1, y2, y3, . . . , ym+i−1)
and Dm+i−1[1] is the i-th greatest element.

At step ym+i from Dm+i−1 to Dm+i the smallest
value Dm+i−1[1] is deleted and ym+i is inserted some-
where for getting Dm+i. Therefore ym+i is one of the
m greatest values in Sm+i = (y1, y2, . . . , ym+i) and the
vector Dm+i contains them. Additionally, Dm+i[1] is
the (i + 1)-th greatest element of Sm+i now. By induc-
tion the statement holds.

Of course, after a step with yi < yi−1 the value
yi might become the smallest current depth on all rays
and exchanges Di−1[1]. As already mentioned we have
yi > Di−1[1] otherwise this step is omitted. Then
by our visiting order the corresponding ray should be
visited again in the next step yi+1. For technical reasons
we simply allow to (imaginarily) visit the same ray
in two successive steps. By construction this cannot
happen physically in the original m-ray version. This
additional freedom can only improve the ratio (3.2).
Any reasonable strategy for the 2π

m
-ray will apparently

not choose the same ray at two successive steps and this
will be shown below.

The next idea is that at the end we really visit
the two rays in an increasing order. That is, now for
a strategy (S, JS) with smallest-current-depth visiting
order, the sequence S will be rearranged to S ′.

In the example of Figure 5(i) the strategy S =
(y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11 . . .) now will be re-
ordered to S′ = (y′1, y

′
2, y

′
3, . . .) with y′1 = y4, y′2 = y2,

y′3 = y6, y′4 = y1, y′5 = y5, y′6 = y9, y′7 = y7, y′8 = y11,
y′9 = y3, y′10 = y8, y′11 = y10 and so on in Figure 5(ii).
For S′ we can again use a visiting order, J ′S′ , induced
by the smallest current depth. This can not increase
the ratio for S′ as shown in Lemma 3.3. Obviously, this
means that the m rays are now visited with increasing
distance and therefore, by the smallest-current-depth
rule, in successive order. For index n in S ′, the index
J ′n is exactly n+m. Thus, S ′ is monotone and periodic
and the ratio is given by

sup
n

n+m−2
∑

i=1

√

y′i
2 − 2y′iyi+1 cos 2π

m
+ y′i+1

2

y′n
.(3.3)

Lemma 3.5. Let S′ = (y′1, y
′
2, y

′
3, . . .) be a se-

quence with entries in increasing order. If J ′S′ =
(J ′−m+1, J

′
−m+2, . . .) is the smallest-current-depth visit-

ing order of S′, the strategy (S′, J ′S′) is monotone and
periodic and the ratio is given by (3.3).

We would like to show that S ′ is not worse than
the original strategy S with respect to the competitive
ratio. The ratio (3.2) for index k (or depth yk) on S
is attained at the next visit at index Jk. At index
i = Jk, yk represents the smallest current depth. In
S′ the distance yk might be visited in another step than
in S, that is y′n = yk and n 6= k. For index n in S′, the
index J ′n equals exactly n+m as already seen. We would
like to compare the ratios for yk in S and y′n = yk in S′.
We will show that for the sequence S also Jk = n + m
has to be fulfilled, since the visit order in S was induced
by current smallest depth. Note that the sum in the
numerator of (3.2) and (3.3) still goes to Jk−2 or J ′n−2,
respectively, these indices are the same.

For example, in the sequence S ′ in Figure 5(ii), the
ray of y′3 = y6 is visited next at index 8, which is given
by J ′3 = 8 = 3+m. In the sequence S in Figure 5(i) the
ray of y6 was also visited again at index 8, represented
by J6 = 8. Thus, for comparing the ratios for the same
denominator y′3 = y6 we have to use the sums in the
numerator of the ratios of S and S ′ up to the same
index J6 − 2 = 6 = J ′3 − 2. But there might be some
different elements since S was reordered in S ′. For the
differing elements in S and S′ up to index 8 = J6 = J ′3,
we see that any of these elements from S, namely y3, y8,
is strictly greater than any corresponding new element
in S′, namely y′6 = y9, y

′
8 = y11. We will prove that

there can be at most m− 1 differing values in S ′ and S
up to index J ′n = Jk for y′n = yk. The above statements
hold in general.

Lemma 3.6. Let (S, JS) be an optimal strategy that
uses the smallest-current-depth visiting order. Let S ′ =
(y′1, y

′
2, . . .) be the strategy with entries of S in increasing

order and let J ′S′ = (J ′−m+1, J
′
−m+2, . . .) be the smallest-

current-depth visiting order for S ′.
For the ratio (3.2) for index k and depth yk for S

and ratio (3.3) for S ′ for index n with depth y′n = yk

we have n + m = Jk = J ′n.
The vectors Sm+i and S′m+i differ in at most j ≤

m−1 values. All the differing values in Sm+i are greater
than the greatest value of S ′m+i.
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Proof. We show that for every i ≥ 1 the i-th greatest
element of Si+m−1 = (y1, y2, . . . , yi+m−1) and the i-
th greatest element of S ′i+m−1 = (y′1, y

′
2, . . . , y

′
n+m−1)

are the same. Let D denote the depth vector of S
and let D′ denote the depth vector of S ′. At step
yi+m by Lemma 3.4 we know that in Di+m−1 the
value yi+m is inserted for the i-th greatest value of
(y1, y2, . . . , yi+m−1) which is Di+m−1[1]. This also
means that all values yj for j = i + m, i + m + 1, . . .
are greater than Di+m−1[1] and Di+m−1[1] is the i-th
greatest value of S in total, which is y′i in S′ and S′i+m−1.

This holds for every i ≥ 1. Therefore Si+m−1 and
S′i+m−1 have at least i entries in common. Let us
assume that for j ≤ m − 1 the values yi1 , yi2 , . . . , yij

of Si+m−1 are not in S′i+m−1. Any of the last j values
of S′i+m−1 is smaller than any value yi1 , yi2 , . . . , yij

.
Otherwise, because S ′ is the sorted version of S, one
of the corresponding values have to be part of S ′i+m−1.

Finally, we consider an entry y′n = yk. From
Lemma 3.5 we know that J ′n = n + m holds
and y′n+m replaces the n-th greatest element y′n of
(y′1, y

′
2, . . . , y

′
n+m−1) from D′

n+m−1 to D′
n+m. From

Lemma 3.4 we know that yn+m replaces the n-th great-
est element of (y1, y2, . . . , yn+m−1) from Dn+m−1 to
Dn+m also. From above we conclude that the n-th
greatest element of (y1, y2, . . . , yn+m−1) is exactly yk

which means Jk = n + m.

The remaining task is to compare the length of the
path (i.e., the numerator of the ratios (3.2) and (3.3))
induced by Sn+m and S′n+m, respectively, up to the
same index J ′n − 2 = Jk − 2 for y′n = yk. For this
comparison we consider simple shortest path problems
on two rays. First, we consider the case where Sn+m

and S′n+m have exactly the same elements. Finally, we
take the up to m − 1 differing elements of Sn+m and
S′n+m into account.

Let a sequence of distances S = (y0, y1, . . . , yn)
and two rays with opening angle < π be given. For
convenience, we denote a point with distance yi from the
origin by yi also. We use images of the corresponding
points on both rays as depicted in Figure 5. The task is,
to compute a shortest path that starts at the smallest
distance yj in S and visits exactly one of the two images
for every distance yi but has to change sucessively from
one ray to the other. We refer to this problem as the
two-ray-shortest-path problem.

We would like to show that the shortest path has
to visit the rays in an increasing order.

Lemma 3.7. Let S = (y1, y2, . . . , yn) be a sequence of
distances for the two-ray-shortest-path problem. The
shortest path which starts at the point with smallest
distance from the origin of the rays has to visit the rays

in an increasing order.

The proof is given in the appendix and is shown
by triangle inequality and induction. Note that this is
somewhat analogous to four point conditions in matrices
see [8] and [18]. The above lemma states that the
path length induced by S′n+m is never greater than the
path length induced by Sn+m, provided that they have
exactly the same entries.

Unfortunately, Sn+m and S′n+m might have m −
1 different elements as stated above. Fortunately,
any of these elements in Sn+m is greater than any
corresponding element in S ′n+m. We compare the two-
rays-shortest path ΠS for Sn+m and ΠS′ of S′n+m, which
means that they visit the same sequence of elements up
to y′i with i ≥ n + 1. The subchain of ΠS′ that visits
(y′i, y

′
i+1, . . . , y

′
n+m) is compared to the subchain of ΠS

which starts at y′i also, but has greater elements. In
Lemma 3.8 we show that this part of ΠS is greater than
the corresponding part of ΠS′ , the proof is given in the
appendix. Altogether, the path length of S ′n+m is never
greater than the path length of Sn+m even if m − 1
elements differ.

Lemma 3.8. Let S = (y0, y1, . . . , yn) and S′ =
(y′0, y

′
1, . . . , y

′
n), be two sequences given in increasing or-

der. Let y0 = y′0 and let yj > y′i for j = 1, . . . , n and
i = 1, . . . , n, The two-ray-shortest-path for S ′ is always
strictly smaller than the two-ray-shortest-path for S.

The above lemmas settle the above problem, the
path length induced by S′n+m is never greater than the
path length induced by Sn+m even if m − 1 elements
differ. The sequence S′ is optimal for the 2π

m
-ray version

of the problem because for every y′n = yk the ratio (3.3)
is not greater than the ratio (3.2).

Now, we have shown that for the 2π
m

-ray version of
the problem there is always an optimal strategy (S ′, J ′S′)
which is monotone and periodic. Fortunately, (S ′, J ′S′)
is periodic and we can apply this strategy to the original
m-ray version as well. But we cannot guarantee to
minimize the starting ratio (3.1) exactly because we
omitted the last step. But we can guarantee to minimize
the following ratio by a periodic and monotone strategy.

(3.1′) sup
k

1

βkxk

·

(

Jk−2
∑

i=1

βixi−xi+
√

(βixi)2−2βixixi+1 cos γi,i+1+x2
i+1

)

Theorem 3.1. For the original m-ray version of the
problem for minimizing (3.1’) there is always an optimal
periodic and monotone strategy S with βi = 1 for
all i. The optimal solution gives a lower bound for the
continuous version.
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Finally, an optimal solution for (3.1’) can be com-
puted by optimizing (3.3) and this gives a lower bound
for the continuous version of the search game. For in-
creasing m the lower bound will rise up to the ratio of
the logarithmic spiral.

We compute an optimal sequence S ′ for ratio (3.3).
Fortunately, S′ is periodic and monotone and fulfills
some other nice properties (for example unimodality of
the functional) so that a general framework of Gal can
be applied, see [15, 14, 1]. We repeat this framework
at the end of the appendix and show that it is appli-
cable to (3.3). Thus for discrete m the ratio (3.3) is
minimized by an exponential sequence y′i = ai. Simple
arithmetic shows that the ratio is given by f(a, m) =
am−1

a−1

√

1− 2a cos 2π
m

+ a2. Thus, we can analytically

find the value amin that minimizes f(a, m). For increas-
ing m the corresponding value f(amin, m) converges to
17.289... For example, for m = 100000 we compute
amin = 1.000009764 . . . and f(amin, 100000) = 17.289 . . .

Theorem 3.2. Spiral search is optimal.

4 Conclusion and Future Work

In this paper we show that the logarithmic spiral
conjecture is true for the searching-for-a-point-in-the-
plane problem and this settles an old open fundamental
search problem introduced by Gal [14].

The main open question is whether we can prove
the spiral conjecture for the searching-for-a-line-in-the-
plane problem also, see [14, 11]. In this setting the
smallest-current-depth visiting order means that we
should extend the convex hull of the strategy at its
smallest radius. One can be optimistic that an approach
similar to the one presented here will succeed.

Acknowledgements: The author would like to
thank the anonymous referees for their valuable com-
ments for improving the paper.
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5 Appendix

First, we would like to prove that the strategy S ′

adapted from S in Section 3 always has a smaller path
length. Only the last at most m − 1 elements differ
from S to S′. The differing elements in S are all greater
than the greatest element of S ′. The following lemma
considers the case for identical entries.

Let a sequence of distances S = (y0, y1, . . . , yn)
and two rays with opening angle < π be given. For
convenience, we denote a point with distance yi from the
origin by yi also. We use images of the corresponding
points on both rays as depicted in Figure 6. The task is,
to compute a shortest path that starts at the smallest
distance yj in S and visits exactly one of the two images
for every distance yi but has to change sucessively from
one ray to the other. We refer to this problem as the
two-ray-shortest-path problem.

Lemma 3.7. Let S = (y1, y2, . . . , yn) be a sequence of
distances for the two-ray-shortest-path problem. The
shortest path which starts at the point with smallest
distance from the origin of the rays has to visit the rays
in an increasing order.

Proof. The statement is shown by induction on the
length of S. For two elements in S this is trivial.
So we consider a sequence S with n + 1 elements and
assume that the statement holds for all sequences with
less than n elements. If the shortest path for n + 1
elements starts with the segment of smallest slope, we
are done for the following reason. We delete the smallest
element, yj , out of S and the shortest path starting at

(ii)

(i)

yi

yl

yl

yj

yj

yk

yk

yi

yl

yi

yl

yj

yj

yk

yk

yi

Figure 6: The shortest path problem for a sequence of
values and their images. (i) If the shortest path does
not start with yjyi, we can replace yjyl and yiyk by yjyi

and ylyk. (ii) After rearrangement, triangle inequality
shows that the path has to start with yjyi. Induction
shows that the shortest path starting at yi has to visit
the images in increasing order.

the second smallest value, yi, visits the images in an
increasing order by induction hypothesis. Therefore we
can combine the segment with smallest slope, yjyi, with
the shortest path starting at yi. Thus, we obtain an
overall shortest path that visits the images in increasing
order.

So let us assume that the shortest path starting for
n + 1 images does not start with the segment, yjyi, of
smallest slope, see Figure 6(i). Therefore the path starts
with a segment yjyl. The ongoing path has to visit yi.
If it already ends at yi, we replace yjyl by yjyi which
is smaller and we are done. If it does not end at yi, we
have a path, P yi

yl
, from yl to yi and an ongoing shortest

path, P≥yi with at least one segment. Let yiyk denote
the first segment of P≥yi . We will show that the overall
path is not optimal by constructing a shorter path that
starts with yjyi, see Figure 6(ii). We start with yjyi and
then we move backwards along P yi

yl
and visit yl. From yl
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we choose a segment ylyk and proceed with P≥yk . This
is a path that starts with yjyi and visits all images. We
have replaced yjyl and yiyk by yjyi and ylyk. Since
we can arrange the situation, see Figure 6(ii), so that
yjyl and yiyk cross each other by triangle inequality the
new path is strictly smaller. A contradiction to the
assumption, the shortest path starts with the segment
yjyi.

for j = 2, . . . , n : y1 = yj

y′
1

y′
1

y′
0 = y0

y′
0 = y0

y′
2

y′
2

y′
n

y′
n

R

for j = 2, . . . , n : y1 = yj

Figure 7: Comparing the shortest path of two sequences
S = (y0, y1, . . . , yn) and S′ = (y′0, y

′
1, . . . , y

′
n), with

y0 = y′0 and yj > y′i for j = 1, . . . , n and i = 1, . . . , n.
The path of sequence S is as small as possible if yj = y1

for j = 2, . . . , n holds. In this case we replace y0y1 and
y1y2 by the shorter sequence y0y

′
1 and y′1y2. Starting

from R = y1 and moving R towards y′0 the path length
y0R and Ry2 decrease until a specular reflection occurs,
then it increases until R = y′0. By induction the path
of S is always greater.

The following lemma considers the last m − 1
differing entries of S and S′.

Lemma 3.8. Let S = (y0, y1, . . . , yn) and S′ =
(y′0, y

′
1, . . . , y

′
n), be two sequences given in increasing or-

der. Let y0 = y′0 and let yj > y′i for j = 1, . . . , n and
i = 1, . . . , n, The two-ray-shortest-path for S ′ is always
strictly smaller than the two-ray-shortest-path for S.

Proof. For n = 1 the statement holds. From y′1 < y1

we conclude that y′0y
′
1 is smaller than y0y1. Now,

we assume that the statement holds for n − 1 ≥ 1
and two sequences S = (y0, y1, . . . , yn) and S′ =
(y′0, y

′
1, . . . , y

′
n) with the given property are given. A

worst-case situation for S ′ occurs if all yj for j =
1, . . . , n are nearly the same. This makes S as small
as possible, since S has to be visited in increasing order
by Lemma 3.7. Therefore we assume that yj = y1 for
j = 2, . . . , n. The optimal path for S starts at y0 < y1

with a segment y0y1 and then moves successively from

one ray to the other at distance y1. We replace the first
two steps for S, namely y0y1 and y1y2 by y0y

′
1 and y′1y2.

The length of y0y
′
1 plus the length of y′1y2 is always

smaller than the length of y0y1 plus the length of y1y2 by
the following argument. Starting at R = y1 we move the
reflection R to the left, see Figure 7. In the beginning
the length of y0R and Ry2 decrease until R represents
a specular reflection. If a the specular reflection is
achieved and we continue to move R to the left the
length y0R and Ry2 increases again. From now on the
maximal increase for y0R and Ry2 occurs if R equals y0.
Comparing y0y0 and y1y1 gives the result. The length
of y0y

′
1 plus the length of y′1y2 is always smaller than

the length of y0y1 plus the length of y1y2.
Therefore we can improve the path for S if we

simply replace y1 by y′1. Obviously, by induction
hypothesis we can now apply the assumption for S =
(y1, . . . , yn) and S′ = (y′1, . . . , y

′
n). Although S was

shortened it is still greater than S ′.

The rest of the appendix is dedicated to the opti-
mization of functionals due to the framework of Gal, see
[15, 14, 1]. We would like to minimize the supremum of

n+m−2
∑

i=1

√

xi
2 − 2xixi+1 cos 2π

m
+ xi+1

2

xn

=:(3.3)

Fn+m−1(x1, x2, . . . , xn+m−1) .

The given problem results in an optimization
problem for functionals Fk(X) with sequences X =
(x1, x2, x3, . . .). For two sequences X = (x1, x2, x3, . . .)
and Y = (y1, y2, y3, . . .) let X + Y := (x1 + y1, x2 +
y2, x3 + y3, . . .) and A · X := (A · x1, A · x2, A · x3, . . .)
for a constant A.

Theorem 5.1. (adapted from Gal [15, 14], Alpern and
Gal [1], and Schuierer [26])
Given a sequence of functional Fk(X) for all k ≥ k0 and
sequences X = (x1, x2, x3, . . .) and Y = (y1, y2, y3, . . .)
with xi > 0 and yi > 0.
If the following conditions hold for Fk:

(i) Fk is continuous,

(ii) Fk is unimodal, which means: Fk(A ·X) = Fk(X)
and Fk(X + Y ) ≤ max{Fk(X), Fk(Y )},

(iii) lim inf
a7→∞

Fk

(

1

ak
,

1

ak−1
, . . . ,

1

a
, 1

)

=

lim inf
εk,εk−1,...,ε1 7→0

Fk (εk, εk−1, . . . , ε1, 1) ,

(iv) lim inf
a7→0

Fk

(

1, a, a2, . . . , ak
)

=

lim inf
εk,εk−1,...,ε1 7→0

Fk (1, ε1, ε2, . . . , εk, ) ,
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(v) Fk+1(x1, . . . , xk+2) ≥ Fk(x2, . . . , xk+2).

then
sup

k

Fk(X) ≥ inf
a

sup
k

Fk(Aa)

with Aa = a0, a1, a2, . . . and a > 0. The supremum of
the functional is minimized by an exponential function.

Note that the given form of condition (v) is a
replacement shown by Schuierer [26], see also Alpern
and Gal [1]. Obviously, the functional of (3.3) fulfills
condition (i), (iii), (iv), (v) and the part Fk(A · X) =
Fk(X) of (ii). The remaining task is to prove that
unimodality holds in the additive sense which is Fk(X +
Y ) ≤ max{Fk(X), Fk(Y )}. Normally, this is the most
difficult thing, here it is easy.

Let θ ∈ (0, π/4], we can show that
√

x2
i +−2 cos(θ)xixi+1 + x2

i+1 +

√

y2
i − 2 cos(θ)yiyi+1 + y2

i+1 ≥

√

(xi+yi)2 − 2 cos(θ)(xi+yi)(xi+1+yi+1) + (xi+1+yi+1)2

holds. This is the triangle inequality of the vectors

A :=

(

(xi − xi+1) cos
θ

2
, (xi + xi+1) sin

θ

2

)

and

B :=

(

(yi − yi+1) cos
θ

2
, (yi + yi+1) sin

θ

2

)

for the Euclidean norm, which is ||A+B|| ≤ ||A||+||B||.
Now let Fk(X) ≤ K and Fk(Y ) ≤ K, which is also

true for K := max{Fk(X), Fk(Y )}. We have

k
∑

i=1

√

x2
i − 2 cos(θ)xixi+1 + x2

i+1 +

k
∑

i=1

√

y2
i − 2 cos(θ)yiyi+1 + y2

i+1 ≤

K · (xk−m+2 + yk−m+2)

and we can prove Fk(X + Y ) ≤ K by the inequality
shown above. This gives unimodality in the additive
sense for (3.3).
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